江苏省2017高考数学试卷,2017年江苏高考数学题及答案
1.怎样评价2017年理科高考数学试卷
2.2017全国高考数学(理I)20题为了判断f(x)的第二个零点,取x=ln(3/a-1)如何想到?
2017年江苏高考数学没有26题,一共只有23题。
如今的高考,考的并不是谁的逻辑思维强,也不是谁的基础知识强;而是在考谁能最快、最准做出题来,得更多的分,可见掌握应试教育的技巧是多么的重要。在应试教育中,只有多记公式,掌握解题技巧,熟悉各种题型,把自己变成一个做题机器,才能在考试中取得最好的成绩。
在高考中只会做题是不行的,一定要在会的基础上加个“熟练”才行,小题一般要控制在每个两分钟左右。在数学里常量与变量是一对矛盾,变量反映的是一个过程,而常量就是变量在某一时刻的值.研究问题时,变量有时“受制”,常量有时“不常”,即使是“常值”,
也可能需要讨论其取不同值的情况下,所引起的不同变化,如我们熟悉的指数函数与对数函数的底数.不要把常量看死,而把它看作变量,放在一个过程中研究,往往会得到巧妙的方法。
怎样评价2017年理科高考数学试卷
每一年的高考过后,最受大家关注的就是数学考试。为什么这么说呢?我想大家都记得2003年的高考数学吧,也正是因为那一年江苏卷从此名震江湖。下面是我整理的2017年江苏高考数学难易程度,大家一起看下是否还是当年的水准。
2017年江苏高考数学难度
2003年,据说当年的高考数学江苏卷被人盗走,有泄题风险,于是特地用了当年的“替补卷”,这一张数学试卷的主出题人,是葛军老师,后来他也被被大家称为“高考数学帝”。同样的10年高考数学,江苏卷葛军再次参与出题。为什么把这两年一起讲呢?因为这两年的江苏卷,难度突然飙升,给考生们杀了个措手不及。
当年很多学生在考场都禁不住压力,边做题边哭,实在是太难了。有些考生更是走出考场就心理崩溃,哭得上气不接下气。这两年的全国平均分说法不一,大概在48分到68分左右,一套高考数学试卷,全国大部分考生竟然连一半的分数都没考到,可想而知难度如何。
后来几年的高考数学,虽然江苏卷依然难度比全国各省试卷都要大一些,但是没有再出现过这样的情况。不过今年确实情况堪忧,不少考生再次哭着走出考场,有学霸称考试太难,草稿纸差点不够,尽全力填补了试卷空白,不知结果如何。
老师闻此情况,特地把2017全国高考数学做了一个难度整理,认真评比之后认为,实际上今年的江苏卷和浙江卷难度不相上下,但是相比03年和10年情况还是要好很多。
高考数学答题注意事项1、抓住重点内容,注重能力培养
高中数学主体内容是支撑整个高考数学最重要的部分,也是进入大学必须掌握的内容,这些内容都是每年高考数学必考且重点考的。象关于函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等,把它们作为复习中的重中之重来处理,要一个一个专题去落实,要通过对这些专题的复习向其他知识点辐射。
2、关心教育动态,注意题型变化
由于新增内容是当前社会生活和生产中应用比较广泛的内容,而与大学接轨内容则是进入大学后必须具备的知识,因此它们都是高考必考的内容,因此一定要把诸如概率与统计、导数及其应用、推理与证明、算法初步与框图的基本要求有目的的进行复习与训练。一定要用新的教学理念进行高三数学教学与复习,
3、细心审题、耐心答题,规范准确,减少失误
计算能力、逻辑推理能力是考试大纲中明确规定的两种培养的能力。可以说是学好数学的两种最基本能力,在数学试卷中的考查无处不在。并且在每年的阅卷中因为这两种能力不好而造成的失分占有相当的比例。所以我们在数学复习时,除抓好知识、题型、方法等方面的教学外,还应通过各种方式、机会提高和规范学生的运算能力和逻辑推理能力。
2017全国高考数学(理I)20题为了判断f(x)的第二个零点,取x=ln(3/a-1)如何想到?
试题与去年相比试卷命朴实,平易近人,试卷贴近考生,符合师生期望,整体中较为常规。
试题中不少题目让师生一见如故,平和亲切,重视考查学生的基本数学素养,全盘兼顾知识点、思想方法与能力的考查,关注数学的应用意识与创新意识,除了具有良好的选拔功能,对中学数学教学也具有很好的导向作用,主要表现在注重基础,重视数学素养,加强数学应用与数学思维能力的培养。
注重基础2017年全国高考文科数学Ⅰ卷对基础知识与基础技能的重全面,又突出重点,贴切教学实际,试卷中的每种题型均设置了数量较多的基础题,许多试题都是单一知识点或是最基础的知识交汇点上设置,如1、2、3、6、7、10、11、13、14、15占选择填空题的比例较高达到63﹪.
数学素养方面:
试卷的第12题以解析几何中的椭圆为背景考察了对椭圆的焦点在x,y坐标轴上进行的分类讨论思想,第21题的导数题求导后对a的正负进行的分类讨论思想。第2题以我国太极图中的阴阳鱼为原型,设计几何概型以及几何概率计算问题,贴近考生生活,通过本题的求解,使考生感受中华传统优秀文化的民族性与世界性,深刻地认识到中华民族优秀传统文化的博大精深和源远流长,激励他们创造出更加辉煌的成就。
试卷重视数学知识的应用:
背景来自于学生所能理解的生活现实与社会现实,如19题以生产零件为命题背景,将数学知识与实际问题相结合,考查考生的阅读理解能力以及应用数学知识解决实际问题的能力,体现了数学的应用价值与人文特色,其中知识难度并不复杂,主要在计算能力上的要求较高。对考生的阅读理解能力、数据处理计算能力,理性思维进行了全方面的考查。
综合性与创新性:
为了提高区分度,试卷在注重基础的同时,也充分考查学生的创新意识,试题稳中有变,如第12题,解析几何知识为依托,结合三角函数考查学生对知识点的细节分析能力,给中等学生提供了展示舞台。再如第16题,对学生的空间想象能力,计算能力,分析问题的能力都有较高的要求,对于基础比较好的同学有一定的优势。具有较好的区分度,体现了高考的选拔性。再如第21题,第一问主要考察学生的分类讨论思想,属于学生熟悉的题型,但是对导函数进行因式分解具有一定的难度,第二问比较容易入手,由第1问的讨论学生需要讨论求最小值,难点在于求解不等式,需要学生有较高综合分析能力以及一定的计算能力的要求,这也充分体现了综合性与创新性的特点.当然本题也给优秀学生提供了发挥的平台。
从今年的试卷总体情况来看,新课标卷贴近中学教学实际,注重思想与方法的考察,体现了数学的基础性,应用性和工具性的学科特色,善于应用知识之间的内在联系构建试卷的主体结构,命题更加科学。
f'(x)=2ax+(2-a)-1/x
=(2ax^2+(2-a)x-1)/x
=(2x-1)(ax+1)/x
a>1
令f'(x)>=0
x<=-1/a或x>=1/2
定义域是x>0
∴x>=1/2
增区间是[1/2,+∞),减区间是(0,1/2]
当1/a>=1/2时
f(x)在区间[1/a,1]内的最大值
=f(1)
=a+2-a-0
=2不是ln3
∴1/a<1/2
a>2
f(x)在区间[1/a,1]内的最大值
=f(1/a)
=a*1/a^2+(2-a)/a-ln(1/a)
=1/a+2/a-1+lna
=3/a-1+lna
=ln3
∴a=3符合a>2
综上a=3
如果您认可我的回答,请点击“为满意答案”,祝学习进步!
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。