1.2022年高考数学全国乙卷(理科)试题答案出炉

2.2022年全国新高考II卷数学真题及答案

3.2022全国乙卷理科数学真题及答案解析

4.2022年全国新高考I卷数学真题及答案出炉

5.高三数学数列测试题及答案

6.2006年上海数学高考题

7.2009年和2010年江苏理科数学高考卷试题和答案

高考数学真题大题及答案,高考数学真题大题

2012年普通高等学校招生全国统一考试福建卷(数学文)word版

数学试题(文史类)

第I卷(选择题?共60分)

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数(2+i)2等于

A.3+4i B.5+4i C.3+2i D.5+2i

2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是

A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}

3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是

A.x=- B.x-1 C.x=5 D.x=0

4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世

A?球? B? 三棱锥? C? 正方体?D?圆柱?

5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于

A ? B C ?D ?

6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?

A?-3? B? -10? C? 0 D? -2?

7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于

A.? B?.?C.? D.1

8.函数f(x)=sin(x-?)的图像的一条对称轴是

A.x= B.x= C.x=- D.x=-?

9.设?,则f(g(π))的值为

A?1 ? B? 0 ?C? -1 ?D? π

10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为

A.-1? B.1? C. D.2

11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于

A.1006 B.2012 C.503 D.0

12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.

其中正确结论的序号是

A.①③ B.①④ C.②③ D.②④

第Ⅱ卷(非选择题共90分)

二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。

13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。

14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。

15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。

16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.

现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.

(Ⅰ)求an和bn;

(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率。

18.(本题满分12分)

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;

(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

19.(本小题满分12分)

如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。

(1) 求三棱锥A-MCC1的体积;

(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。

20.?(本小题满分13分)

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。

(1)sin213°+cos217°-sin13°cos17°

(2)sin215°+cos215°-sin15°cos15°

(3)sin218°+cos212°-sin18°cos12°

(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°

(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°

Ⅰ?试从上述五个式子中选择一个,求出这个常数?

Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。

21.(本小题满分12分)

如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。

(1) 求抛物线E的方程;

(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。

22.(本小题满分14分)

已知函数?且在?上的最大值为?,

(1)求函数f(x)的解析式;

(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。

2012年普通高等学校招生全国统一考试福建卷(数学文)word版

数学试题(文史类)

第I卷(选择题?共60分)

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数(2+i)2等于

A.3+4i B.5+4i C.3+2i D.5+2i

2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是

A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}

3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是

A.x=- B.x-1 C.x=5 D.x=0

4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世

A?球? B? 三棱锥? C? 正方体?D?圆柱?

5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于

A ? B C ?D ?

6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?

A?-3? B? -10? C? 0 D? -2?

7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于

A.? B?.?C.? D.1

8.函数f(x)=sin(x-?)的图像的一条对称轴是

A.x= B.x= C.x=- D.x=-?

9.设?,则f(g(π))的值为

A?1 ? B? 0 ?C? -1 ?D? π

10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为

A.-1? B.1? C. D.2

11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于

A.1006 B.2012 C.503 D.0

12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.

其中正确结论的序号是

A.①③ B.①④ C.②③ D.②④

第Ⅱ卷(非选择题共90分)

二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。

13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。

14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。

15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。

16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.

现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.

(Ⅰ)求an和bn;

(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率。

18.(本题满分12分)

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;

(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

19.(本小题满分12分)

如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。

(1) 求三棱锥A-MCC1的体积;

(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。

20.?(本小题满分13分)

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。

(1)sin213°+cos217°-sin13°cos17°

(2)sin215°+cos215°-sin15°cos15°

(3)sin218°+cos212°-sin18°cos12°

(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°

(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°

Ⅰ?试从上述五个式子中选择一个,求出这个常数?

Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。

21.(本小题满分12分)

如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。

(1) 求抛物线E的方程;

(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。

22.(本小题满分14分)

已知函数?且在?上的最大值为?,

(1)求函数f(x)的解析式;

(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。

2022年高考数学全国乙卷(理科)试题答案出炉

从主干知识所占比重来看,新高考数学试卷与原来保持一致,主干知识的考察在60分,占整个填选题的75%,这也启示我们高中数学主干知识的稳定性与重要性,在以后的备考中要引起高度的重视。

2021年“新高考”数学试卷结构

第一大题,单项选择题,共8小题,每小题5分,共40分;

第二大题,多项选择题,共4小题,每小题5分,部分选对得3分,有选错得0分,共20分;

第三大题,填空题,共4小题,每小题5分,共20分;

第四大题,解答题,共6小题,均为必考题,涉及的内容是高中数学的六大主干知识:三角函数,数列,统计与概率,立体几何,函数与导数,解析几何。每小题12分,共60分。

怎么学好数学

数学是个费时费力的学科,无论文理,但凡数学好的同学很稳定的同学,他的数学相关时间基本符合一天时间的40-50%,所以如果数学想要冲击140,那么至少要保证40%的时间要花在数学上,如果你其他部分是很偏科的,那么就没有时间花在数学上,就不要做数学140的梦了

对于那些压轴题12、16、20、21来讲,首先不能怂,就全国卷目前 命题趋势来看,16题偏于简单,12题难度在增大,所以在有时间的情况下,可以先适度钻研16题,12题没时间没思路可以懵,毕竟是选择题,还是有概率蒙对的。

20题圆锥曲线类型考的不是难度,而是你是否认真。其实圆锥曲线并不难,该理解的关键点和题型搞清楚了它其实并没有太大的变化,所以这个地方题目去刷真题即可。(所有的好题都值得做三遍,什么是好题,你既然110以上了,应该有这个基本判断。)第一遍做正常做,做完对答案;第二遍隔天或者隔两天做效果最好,重新快速把昨天的好的题目过一遍,要针对关键步骤进行梳理,第二遍的想法和第一遍的想法有什么区别,差距在哪里,可以丰富思路,改变思考习惯,对于压力很大的考场有很大帮助。第三遍最好是7天以后,时隔7天,豁然开朗,不信你试试。好的学生在这一点上做的很好,拿到题目的时候他们并不是短时间内想出来这个题目怎么解,而是想起来类似很明朗的思路,按照这个思路去做题,然后一步步套进去,演算,就得出结果了。

2022年全国新高考II卷数学真题及答案

高考结束后,考生们相互之间都会对答案、估分,所以知道有本省的高考试题和答案非常重要,以方便自己参考核对实际考试情况。下面是我为大家整理的关于2022年高考数学全国乙卷(理科)试题答案,如果喜欢可以分享给身边的朋友喔!

2022年高考数学全国乙卷(理科)试题答案

高中数学快速提分技巧

先速度,再准确

做数学题的两个基本指标是快和准。在解决快和准这一对矛盾问题时,不妨先求快,再求准。自己计时做题,在规定时间内完成,然后自我改卷评分。先求“快”,力求做完,再求“准”。很多高考数学做不完,就是平时缺少这种高强度训练的结果。要知道,在高考中,“时间就意味着胜利”。

把“快”列为优先、第一位的因素的理由有:

第一,如上所述,现在的考试,是将熟练程度列入考察因素。要想拿高分,就必须保持一定的解题速度。

第二,从学习心理学讲,做完一件事(尽管不完善)会使人有种成就感。先有了这种成就感,再去追求完美感(少错),是符合人的学习心理的。

教材试卷化角色互换

北京市十三中的高考状元冯平平同学说,她的成绩一直很稳定,但拔不了尖。为了她很苦恼,不知道怎么做才能打破这一局面。直至有一天她忽然想到把试卷和教材来个角色互换,具体做法:

第一步,把试卷依照教材的顺序清理好,并编上序号。因为试卷基本都是按教材走的,整理起来并不费劲。

第二步,在试卷的开始处写上一段“导语”。主要内容有:一是此试卷考什么,二是与考试有关的知识要点。

第三步,在试卷结尾处,写上一段“小结”, 总结 自己考试情况,写出自己在知识上的缺陷。

冯平平说,将这些试卷装订起来,反复阅读,实在比看教材过瘾。

再说教材与试卷的“角色互换”。冯平平同学的做法如下:

第一步,认真阅读教材。

第二步,阅读一段,就用若干问题以考题形式总结出来。

第三步,将问题和参考答案写在一个本上,至此,教材试卷化工作即已完成。

冯平平说,教材上每一节或每一章往往也有思考题,但教材试卷化时,要比教材更细,可以一小段就出一道题。

高考数学答题攻略

要想在高考数学考场上考出优异的成绩,不但需要扎实的基础知识、较高的数学解题能力做基础,临场考试的技巧更是无数学子圆梦所必备的。

针对数学学科特点,谈一下数学高考答题技巧,仅供参考:

1.调整好状态,控制好自我

(1)保持清醒。数学的考试时间在下午,建议同学们中午最好休息半个小时或1个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

(2)按时到位。但发卷时间应在开考前5-10分钟内,建议同学们提前15-20分钟到达考场。

2.通览试卷,树立自信

刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。答题时,见到简单题,要细心,莫忘乎所以。面对偏难的题,要耐心,不能急。

3.提高解选择题的速度、填空题的准确度

数学选择题要求知识灵活运用,解题要求是只要结果、不要过程。因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。

由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。填空题也是只要结果、不要过程,因此要力求“完整、严密”。

4.审题要慢,做题要快,下手要准

题目本身就是这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。

找到解题 方法 后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。

5.保质保量拿下中下等题目

中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。

6.要牢记分段得分的原则,规范答题

会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,

今年仍是网上阅卷,望同学们规范答题,减少隐形失分。

2022年高考数学全国乙卷(理科)试题答案(预测)相关 文章 :

★ 2022全国新高考Ⅱ卷理科数学试题及答案解析

★ 2022年高考乙卷数学真题试卷

★ 新高考全国一卷2022年数学试卷及答案解析

★ 全国新高考1卷数学真题卷及答案详解2022年

★ 2022年全国新高考II卷数学真题及答案

★ 2022年高考真题全国新高考1卷数学试卷及答案解析

★ 2022年全国乙卷高考作文审题评析

★ 2022年全国乙卷高考数学(文)真题及答案

★ 2022年全国乙卷英语高考真题与答案解析

★ 2022年全国乙卷高考精选作文

2022全国乙卷理科数学真题及答案解析

十年寒窗标记的生活刻度难以磨灭,伏案苦读也没法用一句“俱往矣”概括,高考注定将是莘莘学子生活之书里浓墨重彩的章节。下面我给大家带来2022年全国新高考II卷数学真题及答案,希望大家喜欢!

2022新高考II卷数学试题及答案

高考数学选择题答题技巧

一、选择题整体攻略

1.审题要慢,做题要快,下手要准。

要认真审题。做题时忌讳的就是不认真读题,埋头苦算,结果不但浪费了大量的时间,甚至有时候还选错,结果事倍功半。所以一定要读透题,由题迅速联想到涉及到的概念,公式,定理以及知识点中要注意的问题。发掘题目中的隐含条件,要去伪存真,领会题目的真正含义。

2.提高解选择题的速度,把握好时间。

数学选择题是知识灵活运用,解题要求是只要结果、不要过程。12个选择题,解题的基本原则是:小题不能大做,要求“快、准、巧”。因而答题 方法 很有技巧性,如果题题都严格论证,个个都详细演算,耗时太多,以致于很多学生没时间做后面会做的题而造成隐性失分,留下终生遗憾。所以,一定要把握好做题时间,容易的一分钟一题,难题也不超过五分钟。

3.仔细检查,不留空白。

最后,做完题后如果尚有时间,要仔细检查,有没有遗漏的,有没有涂错的,全面认真地再做一遍,可用不同的方法做一下,验证答案。另外遇到真不会做的,也不要空着不做,一定要选个答案。

高考备考技巧

1、对照考纲说明,梳理板块框架

先对照考试大纲,将每个学科的知识点毫无遗漏地构建出框架结构图,让自己在复习时能心中有数,不留盲点。

接着对照做出的知识框架图,回忆和联想复习过的题型和知识点,将解题思路和 学习方法 整理和归纳出来,反复练习和验证。

2、建立习题档案,反复思 考研 读

在高三学习中,题海战术在第二轮复习中能够起到非常明显的提分效果,但是到距离高考60天时,题海战术就不管用了。

这时候要加强典型例题和重点题型的 总结 归纳,将错题整理成册,定期翻看和思考。

3、在5月中旬以前,延续以前的学习方法

最好是每天适当早起,背诵或阅读英语的词组和句型;以不影响早晨上课时的学习效果为前提;中午时间视自己情况而定,学习和休息都可以,晚上最迟一点睡觉,不能影响第二天的复习进度。

4、5月中旬到6月初,调整复习节奏,切换考试模式

这个阶段越来越接近高考,很多同学都会出现答题思路不清晰、学习精力不集中的瓶颈期。

这个时候,同学们应该改变之前的学习模式,减少做题练习,多浏览以前做过的模拟试卷,翻看整理的错题集。对自己在考前掌握的知识点进行查漏补缺。如果还是感觉心烦意乱,可以在做练习时降低难度,增强自信心。

2022年全国新高考II卷数学真题及答案相关 文章 :

★ 全国新高考1卷数学真题卷及答案详解2022年

★ 2022年高考真题全国新高考1卷数学试卷及答案解析

★ 2022高考甲卷数学真题试卷及答案

★ 2022年全国乙卷高考数学(文)真题及答案

★ 2022年全国乙卷高考数学(理科)试卷

★ 2022北京卷高考文科数学试题及答案解析

★ 2022年全国新高考2卷语文真题及答案解析

★ 2022高考全国甲卷数学试题及答案

★ 2022高考数学大题题型总结

★ 高考数学选择题解题方法2022

2022年全国新高考I卷数学真题及答案出炉

随着近几年高考人数增加,高考压力仍处于高位,很多人都想知道理科高考试卷,以方便自己参考核对实际考试情况。下面是我为大家收集的关于2022全国乙卷理科数学真题及答案解析。希望可以帮助大家。

2022全国乙卷理科真题及答案解析

高考理科综合的答题有哪些技巧呢

一、顺序做题:按学科的顺序做题比较好。因为理综是同一学科内的综合,而三科的知识体系不同、思维 方法 不同、答题的思路也不尽相同。按科目答题,可以使自己的思路有个连续性,从而提高做题的准确性。在这三科中,先做自己强势学科,再做弱势学科。这样在最短的时间内完成并获得分数,又为弱势科目留下更多的时间。

二、缜密审题:通读全题。不但要读题干,还要读题目所要解答的问题,要全面、正确地理解题意,弄清题目要求和解答内容。

审关键词。如化学试题中的“过量”“少量”“无色”“酸性”“碱性”“充分反应”“短周期”等,物理试题中的“静止”“匀速”“自由落体”等词。

审题目要求。如:写“电子式”“结构简式”“名称”“化学方程式”“离子方程式”等

审解题突破口。即解题的切入点,是解题的关键信息,特别是各类推断题、有机合成题等。

审有效数字。使用仪器的精度:如滴定管0.01mL;已知数据的显示:如称取样品9.50g;题目中的要求:如结果保留两位有效数字。

审题型。试卷在题序中并没有标明题型,但同样问题有不同的问法,就有不同的解答要求。因此题型决定出题的方向、解题的方法、结果表达的形式等。题型混编是高考题的特点。

三、先易后难:解题时要先易后难,这样可以增强自信心。若碰到难题,一时难以解答,可以暂时跳过,在草纸上作好记录,以防遗忘。容易的题完成后,节省下的时间,再攻克难题。

有些考生看到试题比较简单或比较熟悉就很兴奋,失去了警惕性而粗心大意,有时看起来很容易很熟悉的试题,稍改变关键词或条件,就会出错。这样的题目恰恰是最容易失分的。这里应该想到,一般来说高考题与日常训练题完全相同的可能性极小,所以必须认真对待,决不能丢分。

还有些考生一看到试题难度较大,就产生了畏难情绪,影响了答题的信心。这时要清楚认识到:你觉得难,别人也不轻松!只要静下心来,仔细认真地审题、作图、深入分析,看似困难的题就能迎刃而解。

涉及到信息题、知识迁移题、新情景创新题等,信息量大,文字长,要善于抓住提炼有用信息,这些题目大都属于“高起点,低落点”,所用到的知识和解题方法,都是日常学到的基本知识及方法,一般解答比较简单。

遇到确实不会做的题目,如果不倒扣分,也不能空白。计算题:应该把部分思路用学科语言(定理、定律的表达式等)表示出来,涉及的化学方程式写出来;选择题:把自己认为最有可能的答案选出来。

若时间很紧张,又一时不能完全解读,就要勇敢的舍去,余下的时间检查会做的题,以确保尽量不失分。

四、第Ⅰ卷答题要求稳

做Ⅰ卷时要心态平和,速度不要过快。此类题采用的方法也较多,技巧性很强。如:守恒法、始终态法、关系式法、作图法等等。生物、化学题是单选, 对于没有把握的题,可利用采取排除法、推理法;物理题答案为一至两个,在没有把握的情况下,确定一个答案后,就不要再猜 其它 答案,否则一个正确,一个错误,结果还是零分。

五、第Ⅱ卷答题要规范

Ⅱ卷答题的规范性是考生应高度重视的问题,不规范表达是导致失分的关键。如化学方面的“pH值”写成“PH值”;化学键连接的位置不准确,如:次氯酸的结构式为:“H—O—Cl”写成“H—Cl—O”;专用名词出现错别字,如“苯”写成“笨”,“坩埚”写成“钳锅”;方程式不配平、或者配平但没有化成最简比、或没有注明反应条件等;语言描述不准确等等问题。

规范表达主要包括:符合题目要求的表达;符合学科特点的表达;符合书写习惯的表达等等。

一些固定格式的语言表达也要掌握:

某一个装置的作用,一般站在两个方面回答:有利于……(这样装配的优点),以防止……(不这样装配的不足)。

实验中得到某沉淀要测其质量,必须按过滤、洗涤、干燥、称量的顺序进行等等……

在叙述的过程中思路要清晰,逻辑关系要严密,表述要准确;训练文字表达能力从基础做起,从字、词、句、专业语言书写,努力达到言简意赅,回答问题要切中要点,抓住关键。

六、确保解题准确率

理综试题难度较大,答题时间很紧,全面复查的可能性不大。所以解题时要准确到位,提高一次性答题的准确率,不要寄希望于复查上。同时要相信自己的第一印象,在没有特别把握的情况下,最好不要随便改动第一次的答案。在有时间复查的情况下,应该重点对首先解答的几道题复查,因为开始答题时精神紧张,思路往往会受到影响,出错的几率较大。

高考完以后应该干什么?

1、放松心情,好好休息

高中三年,我们一直在熬夜,一直在起早。高考结束之后,就能好好的休息一下了!可以选择用三天的时间好好睡觉,整理内务,把用过的学习材料整理一下,送给学弟学妹。网上疯传的撕书、撕卷子的发泄方式有辱斯文。考完一定要让自己得到放松和心情的调整。

2、考驾照

无论有没有买车计划,学会开车,将是未来生活一项必备的技能。大学期间,业余时间可以用来看书、参加社团活动、进行 社会实践 ,以完成自我增值。进入工作岗位,工作压力的增加及不固定的休息时间,很难在短时间内完成驾校学习。所以,这3个月是学驾校的时期。

3、看看喜欢的书

没有了考试大纲,可以尽情地看自己感兴趣的书;没有了标准答案,可以放肆地批判性阅读,读一些“无用”的书。阅读经典的作品,开拓自己的思维和视野,要知道,大学可是藏龙卧虎的地方,而读书是提高个人修为的方式。

4、发展一项 爱好

高中因为学习,不得不暂时舍弃自己的爱好,这3个月就是个好机会让你重新拾起。学一件乐器,练练书法,打打球、跳跳 街舞 、绣个 十字绣 。做喜欢做的事,争取发展成特长。以后会发现,有特长的人拥有更多机会。

5、给自己一次 毕业 旅行

旅行对于人的成长无疑是巨大的,前期的路线规划、消费规划、住宿预订或干脆搭帐篷;路途中遇到的形形色色,或人、或事、或物;旅程后的自我 总结 。我想,这也是给高考完的孩子们的一次成年之旅。学会去承担责任,学会去做选择,学会把握和放弃,学会坚持。

6、规划未来

休息够了也玩够了,接下来就是要好好规划一下自己的未来了。高考时人生的一个转折点,意味着新生活的开始,无论是选择继续升学还是进入社会,都应该有自己的思量。

7、准备填报志愿事宜

高考结束之后随之而来的事情就是填报志愿,俗话说7分靠成绩,三分靠志愿,如果我们没能提前做好准备,填报志愿上出了差错,就很容易让自己出现落榜的现象。

8、向陪伴的人说声“谢谢”

感恩的心意永远不会迟到。六月季,既是毕业季,也是感恩季,感恩老师,感恩父母,感恩一直给与鼓励、一直陪伴身边、一直默默付出的亲人和朋友。多去看望年迈的爷爷奶奶,外公外婆,在这无拘无束的时光里多陪陪他们。

2022全国乙卷理科真题及答案解析相关 文章 :

★ 2022高考全国乙卷政治卷真题及答案

★ 2022年全国乙卷高考文科数学试卷及答案

★ 2022年全国乙卷高考作文范文2篇

★ 2022年全国乙卷高考数学(文)真题及答案

★ 2022高考全国乙卷语文试题答案一览

★ 2022全国乙卷高考语文真题及答案(模拟)

★ 2022全国新高考II卷语文试题及答案解析

★ 高考现代文阅读真题及答案解析

★ 2022年新高考Ⅰ卷语文题目与答案参考

★ 全国乙卷高考作文《跨越,再跨越》2022(10篇)

高三数学数列测试题及答案

高考结束之后,各位考生和家长最想知道的就是考生考的怎么样,有很多考生在考完很着急想要知道试题答案从而进行自我估分,下面是我为大家整理的关于2022年全国新高考I卷数学真题及答案,如果喜欢可以分享给身边的朋友喔!

2022年全国新高考I卷数学真题

2022年全国新高考I卷数学真题答案

高考数学七大考试技巧

一、提前进入“角色”

高考前一个晚上睡足八个小时,早晨吃好清淡早餐,按清单带齐一切用具,提前半小时到达考区,一方面可以 消除紧张 、稳定情绪、从容进场,另一方面也留有时间提前进入“角色”——让大脑开始简单的数学活动,进入单一的数学情境。如:

1.清点一下用具是否带齐(笔、橡皮、作图工具、身分证、准考证等,用具由省考试院统一发放)。

2.把一些基本数据、常用公式、重要定理在脑子里“过过**”。

3.最后看一眼难记易忘的知识点。

4.互问互答一些不太复杂的问题。

二、精神要放松,情绪要自控

最易导致紧张、焦虑和恐惧心理的是入场后与答卷前的“临战”阶段,此时保持心态平衡的 方法 有三种:

①转移注意法:避开临考者的目光,把注意力转移到某一次你印象较深的数学模拟考试的评讲课上,或转移到对往日有趣、滑稽事情的回忆中。

②自我安慰法:如“我经过的考试多了,没什么了不起”,“考试,老师监督下的独立作业,无非是换一换环境”等。

③抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,(最好默念几遍:“阿弥陀佛或祖先保佑”呵呵,还真的管用)如此进行到发卷时。

三、迅速摸透“题情”

刚拿到试卷,一般心情比较紧张,不忙匆匆作答,可先从头到尾、正面反面通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作全面调查,一般可在十分钟之内做完三件事:

1.顺利解答那些一眼看得出结论的简单选择或填空题(建议第一题做两遍,直至答案一致为止,一旦解出,情绪立即会稳定)。

2.对不能立即作答的题目,可一面通览,一面粗略分为甲、已两类:甲类指题型比较熟悉、估计上手比较容易的题目,乙类是题型比较陌生、自我感觉比较困难的题目。

3.做到三个心中有数:对全卷一共有几道大小题有数,防止漏做题,对每道题各占几分心中有数,大致区分一下哪些属于代数题,哪些属于三角题,哪些属于综合型的题。

通览全卷是克服“前面难题做不出,后面易题没时间做”的有效 措施 ,也从根本上防止了“漏做题”。

四、信心要充足,暗示靠自己

答卷中,见到简单题,要细心,不要忘乎所以,谨防“大意失荆州”。面对偏难的题,要耐心,不能急。考试全程都要确定“人家会的我也会,人家不会的我也会”的必胜信念,使自己始终处于最佳竞技状态。

五、三先三后

在通览全卷、并作了简单题的第一遍解答后,情绪基本趋于稳定,大脑趋于亢奋,此后七八十分钟内就是最佳状态的发挥或收获丰硕果实的黄金季节了。实践证明,满分卷是极少数,绝大部分考生都只能拿下部分题目或题目的部分得分。因此,实施“三先三后”及“分段得分”的考试艺术是明智的。

1.先易后难。就是说,先做简单题,再做复杂题;先做甲类题,再做乙类题。当进行第二遍解答时(通览并顺手解答算第一遍),就无需拘泥于从前到后的顺序,应根据自己的实际,跳过啃不动的题目,从易到难。

2.先高(分)后低(分)。这里主要是指在考试的后半段时要特别注重时间效益,如两道题都会做,先做高分题,后做低分题,以使时间不足时少失分;到了最后十分钟,也应对那些拿不下来的题目就高分题“分段得分”,以增加在时间不足前提下的得分。

3.先同后异。就是说,可考虑先做同学科同类型的题目。这样思考比较集中,知识或方法的沟通比较容易,有利于提高单位时间的效益。一般说来,考试解题必须进行“兴奋灶”的转移,思考必须进行代数学科与几何学科的相互换位,必须进行从这一章节到那一章节的跳跃,但“先同后异”可以避免“兴奋灶”过急、过频和过陡的跳跃。

三先三后,要结合实际,要因人而异,谨防“高分题久攻不下,低分题无暇顾及”现象发生。

六、一慢一快

就是说,审题要慢,做题要快。

题目本身是“怎样解这道题”的信息源,所以审题一定要逐字逐句看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正看清题意。解题实践表明,条件预示可知并启发解题手段,结论预告需知并诱导解题方向。凡是题目未明显写出的,一定是隐蔽给予的,只有细致的审题才能从题目本身获得尽可能多的信息,这一步不要怕慢,建议将题目读两遍。

找到解题方法后,书写要简明扼要,快速规范,不要拖泥带水,啰嗦重复,尤忌画蛇添足。一般来说,一个原理或者一个定理公式写一步就可以了,至于不是题目考查的`过渡知识,可以直接写出结论。高考允许合理省略非关键步骤。

为了提高书写效率,应尽量使用数学语言、符号,这比文字叙述要节省而严谨。

七、分段得分

对于同一道题目,有的人理解得深,有的人理解得浅,有的人解决得多,有的人解决得少。为了区分这种情况,高考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。

鉴于这一情况,高考中对于难度较大的题目采用“分段得分”的策略实为一种高招儿。其实,考生的“分段得分”是高考“分段评分”的逻辑必然。“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。

1.对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的——会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤——对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。高考阅卷 经验 表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。

2.对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。

①缺步解答

如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”,确实是个好主意。

②跳步答题

解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。

也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。

③退步解答

“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。

④辅助解答

一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举,既必不可少而又不困难。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。

书写也是辅助解答。“书写要工整、卷面能得分”是说第一印象好会在阅卷老师的心理上产生光环效应:书写认真→学习认真→成绩优良→给分偏高。

有些选择题,“大胆猜测”也是一种辅助解答,实际上猜测也是高考必须考查的一种能力——合情推理能力。

2022年全国新高考I卷数学真题及答案出炉相关 文章 :

★ 2022全国新高考I卷语文试题及答案

★ 2022年全国新高考Ⅰ卷英语试题及答案最新

★ 2022年全国一卷高考真题试卷试题

★ 2022年北京高考数学试卷

★ 2022年全国新高考II卷数学真题及答案

★ 2022年新高考Ⅱ卷数学真题试卷及答案

★ 2022全国甲卷高考数学文科试卷及答案解析

★ 2021新高考全国1卷数学真题及答案

★ 2022全国新高考Ⅰ卷英语真题及答案解析

★ 2022高考甲卷数学真题试卷及答案

2006年上海数学高考题

  一、选择题:本大题共12小题,每小题5分,共60分.

 1.在等差数列{an}中,若a1+a2+a12+a13=24,则a7为( )

 A.6 B.7 C.8 D.9

 解析:∵a1+a2+a12+a13=4a7=24,∴a7=6.

 答案:A

 2.若等差数列{an}的前n项和为Sn,且满足S33-S22=1,则数列{an}的公差是( )

 A.12 B.1 C.2 D.3

 解析:由Sn=na1+n(n-1)2d,得S3=3a1+3d,S2=2a1+d,代入S33-S22=1,得d=2,故选C.

 答案:C

 3.已知数列a1=1,a2=5,an+2=an+1-an(n∈N*),则a2 011等于( )

 A.1 B.-4 C.4 D.5

 解析:由已知,得a1=1,a2=5,a3=4,a4=-1,a5=-5,a6=-4,a7=1,a8=5,…

 故{an}是以6为周期的数列,

 ∴a2 011=a6×335+1=a1=1.

 答案:A

 4.设{an}是等差数列,Sn是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是( )

 A.d<0 B.a7=0

 C.S9>S5 D.S6与S7均为Sn的最大值

 解析:∵S5<S6,∴a6>0.S6=S7,∴a7=0.

 又S7>S8,∴a8<0.

 假设S9>S5,则a6+a7+a8+a9>0,即2(a7+a8)>0.

 ∵a7=0,a8<0,∴a7+a8<0.假设不成立,故S9<S5.∴C错误.

 答案:C

 5.设数列{an}是等比数列,其前n项和为Sn,若S3=3a3,则公比q的值为( )

 A.-12 B.12

 C.1或-12 D.-2或12[

 解析:设首项为a1,公比为q,

 则当q=1时,S3=3a1=3a3,适合题意.

 当q≠1时,a1(1-q3)1-q=3a1q2,

 ∴1-q3=3q2-3q3,即1+q+q2=3q2,2q2-q-1=0,

 解得q=1(舍去),或q=-12.

 综上,q=1,或q=-12.

 答案:C

 6.若数列{an}的通项公式an=5 252n-2-425n-1,数列{an}的最大项为第x项,最小项为第y项,则x+y等于( )

 A.3 B.4 C.5 D.6

 解析:an=5252n-2-425n-1=525n-1-252-45,

 ∴n=2时,an最小;n=1时,an最大.

 此时x=1,y=2,∴x+y=3.

 答案:A

 7.数列{an}中,a1 =15,3an+1= 3an-2(n∈N *),则该数列中相邻两项的乘积是负数的是( )

 A.a21a22 B.a22a23 C.a23a24 D.a24a25

 解析:∵3an+1=3an-2,

 ∴an+1-an=-23,即公差d=-23.

 ∴an=a1+(n-1)d=15-23(n-1).

 令an>0,即15-23(n-1)>0,解得n<23.5.

 又n∈N*,∴n≤23,∴a23>0,而a24<0,∴a23a24<0.

 答案:C

 8.某工厂去年产值为a,计划今后5年内每年比上年产值增加10%,则从今年起到第5年,这个厂的总产值为( )

 A.1.14a B.1.15a

 C.11×(1.15-1)a D.10×(1.16-1)a

 解析:由已知,得每年产值构成等比数列a1=a,w

 an=a(1+10%)n-1(1≤n≤6).

 ∴总产值为S6-a1=11×(1.15-1)a.

 答案:C

 9.已知正数组成的等差数列{an}的前20项的和为100,那么a7a14的最大值为( )

 A.25 B.50 C.1 00 D.不存在

 解析:由S20=100,得a1+a20=10. ∴a7+a14=10.

 又a7>0,a14>0,∴a7a14≤a7+a1422=25.

 答案:A

 10.设数列{an}是首项为m,公比为q(q≠0)的等比数列,Sn是它的前n项和,对任意的n∈N*,点an,S2nSn( )

 A.在直线mx+qy-q=0上

 B.在直线qx-my+m=0上

 C.在直线qx+my-q=0上

 D.不一定在一条直线上

 解析:an=mqn-1=x, ①S2nSn=m(1-q2n)1-qm(1-qn)1-q=1+qn=y, ②

 由②得qn=y-1,代入①得x=mq(y-1), 即qx-my+m=0.

 答案:B

 11.将以2为首项的偶数数列,按下列分组:(2),(4,6),(8,10,12),…,第n组有n个数,则第n组的首项为( )

 A.n2-n B.n2+n+2

 C.n2+n D.n2-n+2

 解析:因为前n-1组占用了数列2,4,6,…的前1+2+3+…+(n-1)=(n-1)n2项,所以第n组的首项为数列2,4,6,…的第(n-1)n2+1项,等于2+(n-1)n2+1-12=n2-n+2.

 答案:D

 12.设m∈N*,log2m的整数部分用F(m)表示,则F(1)+F(2)+…+F(1 024)的值是( )

 A.8 204 B.8 192

 C.9 218 D.以上都不对

 解析:依题意,F(1)=0,

 F(2)=F(3)=1,有2 个

 F(4)=F(5)=F(6)=F(7)=2,有22个.

 F(8)=…=F(15)=3,有23个.

 F(16)=…=F(31)=4,有24个.

 …

 F(512)=…=F(1 023)=9,有29个.

 F(1 024)=10,有1个.

 故F(1)+F(2)+…+F(1 024)=0+1×2+2×22+3×23+…+9×29+10.

 令T=1×2+2×22+3×23+…+9×29,①

 则2T=1×22+2×23+…+8×29+9×210.②

 ①-②,得-T=2+22+23+…+29-9×210 =

 2(1-29)1-2-9×210=210-2-9×210=-8×210-2,

 ∴T=8×210+2=8 194, m]

 ∴F(1)+F(2)+…+F(1 024)=8 194+10=8 204.

 答案:A

 第Ⅱ卷 (非选择 共90分)

  二、填空题:本大题共4个小题,每小题5分 ,共20分.

 13.若数列{an} 满足关系a1=2,an+1=3an+2,该数 列的通项公式为__________.

 解析:∵an+1=3an+2两边加上1得,an+1+1=3(an+1),

 ∴{an+1}是以a1+1=3为首项,以3为公比的等比数列,

 ∴an+1=33n-1=3n,∴an=3n-1.

 答案:an=3n-1

 14.已知公差不为零的等差数列{an}中,M=anan+3,N=an+1an+2,则M与N的大小关系是__________.

 解析:设{an}的公差为d,则d≠0.

 M-N=an(an+3d)-[(an+d)(an+2d)]

 =an2+3dan-an2-3dan-2d2=-2d2<0,∴M<N.

 答案:M<N

 15.在数列{an}中,a1=6,且对任意大于1的正整数n,点(an,an-1)在直线x-y=6上,则数列{ann3(n+1)}的前n项和Sn=__________.

 解析:∵点(an,an-1)在直线x-y=6上,

 ∴an-an-1=6,即数列{an}为等差数列.

 ∴an=a1+6(n-1)=6+6(n-1)=6n,

 ∴an=6n2.

 ∴ann3(n+1)=6n2n3(n+1)=6n(n+1)=61n-1n+1

 ∴Sn=61-12+12-13+…+1n-1n+1.=61-1n+1=6nn+1.

 答案:6nn+1

 16.观察下表:

 1

 2 3 4

 3 4 5 6 7

 4 5 6 7 8 9 10

 …

 则第__________行的各数之和等于2 0092.

 解析:设第n行的各数之和等于2 0092,

 则此行是一个首项a1=n,项数为2n-1,公差为1的等差数列.

 故S=n×(2n-1)+(2n-1)(2n-2)2=2 0092, 解得n=1 005.

 答案:1 005

  三、解答题:本大题共6小题,共70分.

 17.(10分)已知数列{an}中,a1=12,an+1=12an+1(n∈N*),令bn=an-2.

 (1)求证:{bn}是等比数列,并求bn;

 (2)求通项an并求{an}的前n项和Sn.

 解析:(1)∵bn+1bn=an+1-2an-2=12an+1-2an-2=12an-1an-2=12,

 ∴{bn}是等比数列.

 ∵b1=a1-2=-32,

 ∴bn=b1qn-1=-32×12n-1=-32n.

 (2)an=bn+2=-32n+2,

 Sn=a1+a2+…+an

 =-32+2+-322+2+-323+2+…+-32n+2

 =-3×12+122+…+12n+2n=-3×12×1-12n1-12+2n=32n+2n-3.

 18.(12分)若数列{an}的前n项和Sn=2n.

 (1)求{an}的通项公式;

 (2)若数列{bn}满足b1=-1,bn+1=bn+(2n-1),且cn=anbnn,求数列{cn}的通项公式及其前n项和Tn.

 解析:(1)由题意Sn=2n,

 得Sn-1=2n-1(n≥2),

 两式相减,得an=2n-2n-1=2n-1(n≥2).

 当n=1时,21-1=1≠S1=a1=2.

 ∴an=2 (n=1),2n-1 (n≥2).

 (2)∵bn+1=bn+(2n-1),

 ∴b2-b1=1,

 b3-b2=3,

 b4-b3=5,

 …

 bn-bn-1=2n-3.

 以上各式相加,得

 bn-b1=1+3+5+…+(2n-3)

 =(n-1)(1+2n-3)2=(n-1)2.

 ∵b1=-1,∴bn=n2-2n,

 ∴cn=-2 (n=1),(n-2)×2n-1 (n≥2),

 ∴Tn=-2+0×21+1×22+2×23+…+(n-2)×2n-1,

 ∴2Tn=-4+0×22+1×23+2×24+…+(n-2)×2n.

 ∴-Tn=2+22+23+…+2n-1-(n-2)×2n

 =2(1-2n-1)1-2-(n-2)×2n

 =2n-2-(n-2)×2n

 =-2-(n-3)×2n.

 ∴Tn=2+(n-3)×2n.

 19.(12分)已知等差数列{an}的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.

 (1)求数列{an}的通项公式;

 (2)若从数列{an}中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成一个新数列{bn},记该数列的前n项和为Tn,求Tn的表达式.

 解析:(1)依题意,得

 3a1+3×22d+5a1+5×42d=50,(a1+3d)2=a1(a1+12d),解得a1=3,d=2.

 ∴an=a1+(n-1)d=3+2(n-1)=2n+1,

 即an=2n+1.

 (2)由已知,得bn=a2n=2×2n+1=2n+1+1,

 ∴Tn=b1+b2+…+bn

 =(22+1)+(23+1)+…+(2n+1+1)

 =4(1-2n)1-2+n=2n+2-4+n.

 20.(12分)设数列{an}的前n项和为Sn,且ban-2n=(b-1)Sn.

 (1)证明:当b=2时,{an-n2n-1}是等比数列;

 (2)求通项an. 新 课 标 第 一 网

 解析:由题意知,a1=2,且ban-2n=(b-1)Sn,

 ban+1-2n+1=(b-1)Sn+1,

 两式相减,得b(an+1-an)-2n=(b-1)an+1,

 即an+1=ban+2n.①

 (1)当b=2时,由①知,an+1=2an+2n.

 于是an+1-(n+1)2n=2an+2n-(n+1)2n

 =2an-n2n-1.

 又a1- 120=1≠0,

 ∴{an-n2n-1}是首项为1,公比为2的等比数列.

 (2)当b=2时,

 由(1)知,an-n2n-1=2n-1,即an=(n+1)2n-1

 当b≠2时,由①得

 an +1-12-b2n+1=ban+2n-12-b2n+1=ban-b2-b2n

 =ban-12-b2n,

 因此an+1-12-b2n+1=ban-12-b2n=2(1-b)2-bbn.

 得an=2, n=1,12-b[2n+(2-2b)bn-1], n≥2.

 21.(12分)某地在抗洪抢险中接到预报,24小时后又一个超最高水位的洪峰到达,为保证万无一失,抗洪指挥部决定在24小时内另筑起一道堤作为第二道防线.经计算,如果有 20辆大型翻斗车同时作业25小时,可以筑起第二道防线,但是除了现有的一辆车可以立即投入作业外,其余车辆需从各处紧急抽调,每隔20分钟就有一辆车到达并投入.问指挥部至少还需组织多少辆车这样陆续,才能保证24小时内完成第二道防线,请说明理由.

 解析:设从现有这辆车投入工作算起,各车的工作时间依次组成数列{an},则an-an-1=-13.

 所以各车的工作时间构成首项为24,公差为-13的等差数列,由题知,24小时内最多可抽调72辆车.

 设还需组织(n-1)辆车,则

 a1+a2+…+an=24n+n(n-1)2×-13≥20×25.

 所以n2-145n+3 000≤0,

 解得25≤n≤120,且n≤73.

 所以nmin=25,n-1=24.

 故至少还需组织24辆车陆续工作,才能保证在24小时内完成第二道防线.

 22.(12分)已知点集L={(x,y)y=mn},其中m=(2x-2b,1),n=(1,1+2b),点列Pn(an,bn)在点集L中,P1为L的轨迹与y轴的交点,已知数列{an}为等差数列,且公差为1,n∈N*.

 (1)求数列{an},{bn}的通项公式;

 (3)设cn=5nanPnPn+1(n≥2),求c2+c3+c4+…+cn的值.

 解析:(1)由y=mn,m=(2x-2b,1),n=(1,1+2b),

 得y=2x+1,即L:y=2x+1.

 ∵P1为L的轨迹与y轴的交点,

 ∴P1(0,1),则a1=0,b1=1.

 ∵数列{an}为等差数列,且公差为1,

 ∴an=n-1(n∈N*) .

 代入y=2x+1,得bn=2n-1(n∈N*).

 (2)∵Pn(n-1,2n-1),∴Pn+1(n,2n+1).

 =5n2-n-1=5n-1102-2120.

 ∵n∈N*,

 (3)当n≥2时,Pn(n-1,2n-1),

 ∴c2+c3+…+cn

 =1-12+12-13+…+1n-1-1n=1-1n.

2009年和2010年江苏理科数学高考卷试题和答案

2006年上海高考数学试卷(文科)

一.填空题:(本大题共12小题,每小题4分,共48分)

1. 已知集合A = { –1 , 3 , 2m – 1 },集合B = { 3 , 4 }。若B ? A,则实数m =__。

2. 已知两条直线l1:ax + 3y – 3 = 0 , l2:4x + 6y – 1 = 0。若l1‖l2,则a =______。

3. 若函数f(x) = ax(a > 0且a ? 1)的反函数的图像过点( 2 , –1 ),则a =_____。

4. 计算: =__________。

5. 若复数z = ( m – 2 ) + ( m + 1 )i为纯虚数(i为虚数单位),其中m ? R,则| | =__________。

6. 函数y = sinxcosx的最小正周期是_____________。

7. 已知双曲线的中心在原点,一个顶点的坐标是( 3 , 0 ),且焦距与虚轴长之比为5:4,则双曲线的标准方程是________。

8. 方程log3( x2 – 10 ) = 1 + log3x的解是_______。

9. 已知实数x , y满足 ,则y – 2x的最大值是______。

10. 在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是__________。(结果用分数表示)

11. 若曲线|y|2 = 2x + 1与直线y = b没有公共点,则b的取值范围是________。

12. 如图,平面中两条直线l1和l2相交于点O。对于平面上任意一点M,若p , q分别是M到直线l1和l2的距离,则称有序非负实数对( p , q )是点M的“距离坐标”。根据上述定义,“距离坐标”是( 1 , 2 )的点的个数是________。

二.选择题:(本大题共4小题,每小题4分,共16分)

13. 如图,在平行四边形ABCD中,下列结论中错误的是( )

(A) (B)

(C) (D)

14. 如果a < 0 , b > 0,那么,下列不等式中正确的是( )

(A) (B) (C) a2 < b2 (D) |a| > |b|

15. 若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的( )

(A)充分非必要条件 (B)必要非充分条件

(C)充分必要条件 (D)既非充分又非必要条件

16. 如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”,在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )

(A) 48 (B) 18 (C)24 (D) 36

三.解答题:(本大题共6小题,共86分)

17.(本小题满分12分)

已知a是第一象限的角,且 ,求 的值。

18.(本小题满分12分)

如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救。甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1°)?

19.(本小题满分14分)

在直三棱柱ABC-A1B1C1中,?ABC = 90° , AB = BC = 1。

(1) 求异面直线B1C1与AC所成角的大小;

(2) 若直线A1C与平面ABC所成角为45°,求三棱锥A1-ABC的体积。

20.(本小题满分14分)

设数列{an}的前n项和为Sn,且对任意正整数n×an + Sn = 4096。

(1) 求数列{an}的通项公式;

(2) 设数列{log2an}的前n项和为Tn,对数列{Tn},从第几项起Tn < –509?

21.(本小题满分16分)

已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F( , 0 ),且右顶点为D( 2 , 0 ),设点A的坐标是( 1 , )。

(1) 求该椭圆的标准方程;

(2) 若是P椭圆上的动点,求线段PA中点M的轨迹方程;

(3) 过原点O的直线交椭圆于点B , C,求△ABC面积的最大值。

22.(本小题满分18分)

已知函数 有如下性质:如果常数a > 0,那么该函数在 上是减函数,在 上是增函数。

(1) 如果函数 在 上是减函数,在 上是增函数,求实常数b的值;

(2) 设常数c ? [ 1 , 4 ],求函数 ( 1 ? x ? 2 )的最大值和最小值;

(3) 当n是正整数时,研究函数 ( c > 0 )的单调性,并说明理由。

上海数学(文史类)参考答案

一、(第1题至笫12题)

1. 4 2. 2 3. 4. 5. 3 6.π 7.

8. 5 9. 0 10. 11.-1<b<1 12. 4

二、(第13题至笫16题)

13. C 14. A 15. A 16. D

三、(第17题至笫22题)

17.解: =

由已知可得sin ,

∴原式= .

18.解:连接BC,由余弦定理得BC2=202+102-2×20×10COS120°=700.

于是,BC=10 .

∵ , ∴sin∠ACB= ,

∵∠ACB<90° ∴∠ACB=41°

∴乙船应朝北偏东71°方向沿直线前往B处救援.

19.解:(1) ∵BC‖B1C1, ∴∠ACB为异面直线B1C1与AC所成角(或它的补角)

∵∠ABC=90°, AB=BC=1, ∴∠ACB=45°,

∴异面直线B1C1与AC所成角为45°.

(2) ∵AA1⊥平面ABC,

∠ACA1是A1C与平面ABC所成的角, ∠ACA =45°.

∵∠ABC=90°, AB=BC=1, AC= ,

∴AA1= .

∴三棱锥A1-ABC的体积V= S△ABC×AA1= .

20.解(1) ∵an+ Sn=4096, ∴a1+ S1=4096, a1 =2048.

当n≥2时, an= Sn-Sn-1=(4096-an)-(4096-an-1)= an-1-an

∴ = an=2048( )n-1.

(2) ∵log2an=log2[2048( )n-1]=12-n,

∴Tn= (-n2+23n).

由Tn<-509,解待n> ,而n是正整数,于是,n≥46.

∴从第46项起Tn<-509.

21.解(1)由已知得椭圆的半长轴a=2,半焦距c= ,则半短轴b=1.

又椭圆的焦点在x轴上, ∴椭圆的标准方程为

(2)设线段PA的中点为M(x,y) ,点P的坐标是(x0,y0),

由 x= 得 x0=2x-1

y= y0=2y-

由,点P在椭圆上,得 ,

∴线段PA中点M的轨迹方程是 .

(3)当直线BC垂直于x轴时,BC=2,因此△ABC的面积S△ABC=1.

当直线BC不垂直于x轴时,说该直线方程为y=kx,代入 ,

解得B( , ),C(- ,- ),

则 ,又点A到直线BC的距离d= ,

∴△ABC的面积S△ABC=

于是S△ABC=

由 ≥-1,得S△ABC≤ ,其中,当k=- 时,等号成立.

∴S△ABC的最大值是 .

22.解(1) 由已知得 =4, ∴b=4.

(2) ∵c∈[1,4], ∴ ∈[1,2],

于是,当x= 时, 函数f(x)=x+ 取得最小值2 .

f(1)-f(2)= ,

当1≤c≤2时, 函数f(x)的最大值是f(2)=2+ ;

当2≤c≤4时, 函数f(x)的最大值是f(1)=1+c.

(3)设0<x1<x2,g(x2)-g(x1)= .

当 <x1<x2时, g(x2)>g(x1), 函数g(x)在[ ,+∞)上是增函数;

当0<x1<x2< 时, g(x2)>g(x1), 函数g(x)在(0, ]上是减函数.

当n是奇数时,g(x)是奇函数,

函数g(x) 在(-∞,- ]上是增函数, 在[- ,0)上是减函数.

当n是偶数时, g(x)是偶函数,

函数g(x)在(-∞,- )上是减函数, 在[- ,0]上是增函数.

2010 年江苏高考数学试题 一、填空题 1、设集合A={-1,1,3},B={a+2,a 2 +4},A∩B={3},则实数a=______▲________ 2、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲________ 3、盒子中有大小相同的3只小球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__ 4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。 5、设函数f(x)=x(e x +ae -x ),x∈ R ,是偶函数,则实数a=_______▲_________ 6、在平面直角坐标系xOy中,双曲线 上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是___▲_______ 7、右图是一个算法的流程图,则输出S的值是______▲_______ 开始 S←1 n←1 S←S+2 n S≥33 n←n+1 否 输出S 结束 是 8、函数y=x 2 (x>0)的图像在点(a k ,a k 2 )处的切线与x轴交点的横坐标为a k+1 ,k为正整数,a 1 =16,则a 1 +a 3 +a 5 =____▲_____ 9、在平面直角坐标系xOy中,已知圆 上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲_____ 10、定义在区间 上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP 1 ⊥x轴于点P 1 ,直线PP 1 与y=sinx的图像交于点P 2 ,则线段P 1 P 2 的长为_______▲_____ 11、已知函数 ,则满足不等式 的x的范围是____▲____ 12、设实数x,y满足3≤ ≤8,4≤ ≤9,则 的最大值是_____▲____ 13、在锐角三角形ABC,A、B、C的对边分别为a、b、c, ,则 __▲ 14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S= ,则S的最小值是_______▲_______ 二、解答题 15、(14分)在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1) (1)求以线段AB、AC为邻边的平行四边形两条对角线的长 (2)设实数t满足( )· =0,求t的值 16、(14分)如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90 0 (1)求证:PC⊥BC (2)求点A到平面PBC的距离 17、(14分)某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角∠ABE=α,∠ADE=β (1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,,请据此算出H的值 (2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m,问d为多少时,α-β最大 A B O F 18.(16分)在平面直角坐标系 中,如图,已知椭圆 的左右顶点为A,B,右顶点为F,设过点T( )的直线TA,TB与椭圆分别交于点M , ,其中m>0, ①设动点P满足 ,求点P的轨迹 ②设 ,求点T的坐标 ③设 ,求证:直线MN必过x轴上的一定点 (其坐标与m无关) 19.(16分)设各项均为正数的数列 的前n项和为 ,已知 ,数列 是公差为 的等差数列. ①求数列 的通项公式(用 表示) ②设 为实数,对满足 的任意正整数 ,不等式 都成立。求证: 的最大值为 20.(16分)设 使定义在区间 上的函数,其导函数为 .如果存在实数 和函数 ,其中 对任意的 都有 >0,使得 ,则称函数 具有性质 . (1)设函数 ,其中 为实数 ①求证:函数 具有性质 ②求函数 的单调区间 (2)已知函数 具有性质 ,给定 , ,且 ,若| |<| |,求 的取值范围 理科附加题 21(从以下四个题中任选两个作答,每题10分) (1)几何证明选讲 AB是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线交AB延长线于C,若DA=DC,求证AB=2BC (2)矩阵与变换 在平面直角坐标系xOy中,A(0,0),B(-3,),C(-2,1),设k≠0,k∈R,M= ,N= ,点A、B、C在矩阵MN对应的变换下得到点A 1 ,B 1 ,C 1 ,△A 1 B 1 C 1 的面积是△ABC面积的2倍,求实数k的值 (3)参数方程与极坐标 在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值 (4)不等式证明选讲 已知实数a,b≥0,求证: 22、(10分)某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元。设生产各种产品相互独立 (1)记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,求x的分布列 (2)求生产4件甲产品所获得的利润不少于10万元的概率 23、(10分)已知△ABC的三边长为有理数 (1)求证cosA是有理数 (2)对任意正整数n,求证cosnA也是有理数 绝密★启用前 学科网 2009年普通高等学校招生全国统一考试(江苏卷) 学科网 数学Ⅰ 学科网 注 意 事 项 考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。本卷满分160分,考试时间为120分钟。考试结束后,请将本卷和答题卡一并交回。 2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。 4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。作答必须用0.5毫米黑色墨水的签字笔。请注意字体工整,笔迹清楚。 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。 6.请保持答题卡卡面清洁,不要折叠、破损。 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 参考公式: 学科网 样本数据 的方差 学科网 一、填空题:本大题共 14 小题,每小题 5 分,共 70 分。请把答案填写在答题卡相应的位置上 . 学科网 1.若复数 ,其中 是虚数单位,则复数 的实部为★. 学科网 2.已知向量 和向量 的夹角为 , ,则向量 和向量 的数量积 ★ . 学科网 3.函数 的单调减区间为 ★ . 学科网 1 1 O x y 4.函数 为常数, 在闭区间 上的图象如图所示,则 ★ . 学科网 学科网 5.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为 ★ . 学科网 6.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表: 学科网 学生 1号 2号 3号 4号 5号 甲班 6 7 7 8 7 乙班 6 7 6 7 9 开始 输出 结束 Y N 则以上两组数据的方差中较小的一个为 ★ . 学科网 7.右图是一个算法的流程图,最后输出的 ★ . 学科网 8.在平面上,若两个正三角形的连长的比为1:2,则它们的面积比为1:4,类似地,在宣传部,若两个正四面体的棱长的比为1:2,则它们的体积比为 学科网 9.在平面直角坐标系 中,点P在曲线 上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为 ★ . 学科网 10.已知 ,函数 ,若实数 满足 ,则 的大小关系为 ★ . 学科网 11.已知集合 , ,若 则实数 的取值范围是 ,其中 ★ . 学科网 12.设和 为不重合的两个平面,给出下列命题: 学科网 (1)若 内的两条相交直线分别平行于 内的两条直线,则 平行于 ; 学科网 (2)若 外一条直线 与 内的一条直线平行,则和 平行; 学科网 (3)设和 相交于直线 ,若 内有一条直线垂直于 ,则和 垂直; 学科网 (4)直线 与 垂直的充分必要条件是 与 内的两条直线垂直. 学科网 上面命题中,真命题的序号 ★ (写出所有真命题的序号). 学科网 13.如图,在平面直角坐标系 中, 为椭圆 的四个顶点, 为其右焦点,直线 与直线 相交于点T,线段 与椭圆的交点 恰为线段 的中点,则该椭圆的离心率为 ★ . 学科网 x y A 1 B 2 A 2 O T M 学科网 学科网 14.设 是公比为 的等比数列, ,令 若数列 有连续四项在集合 中,则 ★ . 学科网 学科网 二、解答题:本大题共 6 小题,共计 90 分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤 . 学科网 15.(本小题满分14分) 学科网 设向量 学科网 (1)若与 垂直,求 的值; 学科网 (2)求 的最大值; 学科网 (3)若 ,求证: ∥ . 学科网 16.(本小题满分14分) 学科网 A B C A 1 B 1 C 1 E F D 如图,在直三棱柱 中, 分别是 的中点,点在上, 学科网 求证:(1) ∥ 学科网 (2) 学科网 17.(本小题满分14分) 学科网 设 是公差不为零的等差数列, 为其前 项和,满足 学科网 (1)求数列 的通项公式及前 项和 ; 学科网 (2)试求所有的正整数 ,使得 为数列 中的项. 学科网 18.(本小题满分16分) 学科网 在平面直角坐标系 中,已知圆 和圆 学科网 x y O 1 1 . . 学科网 (1)若直线 过点 ,且被圆 截得的弦长为 ,求直线 的方程; 学科网 (2)设P为平面上的点,满足:存在过点P的无穷多对互相垂的直线 ,它们分别与圆 和圆 相交,且直线 被圆 截得的弦长与直线 被圆 截得的弦长相等,试求所有满足条件的点P的坐标. 学科网 19.(本小题满分16分) 学科网 按照某学者的理论,假设一个人生产某产品单件成本为 元,如果他卖出该产品的单价为 元,则他的满意度为 ;如果他买进该产品的单价为 元,则他的满意度为 .如果一个人对两种交易(卖出或买进)的满意度分别为 和 ,则他对这两种交易的综合满意度为 . 学科网 现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为 元和 元,甲买进A与卖出B的综合满意度为 ,乙卖出A与买进B的综合满意度为 学科网 (1) 求和 关于 、 的表达式;当时,求证: = ; 学科网 (2) 设 ,当、 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少? 学科网 (3) 记(2)中最大的综合满意度为 ,试问能否适当选取 、 的值,使得 和 同时成立,但等号不同时成立?试说明理由。 学科网 学科网 20.(本小题满分16分) 学科网 设 为实数,函数 . 学科网 (1) 若 ,求 的取值范围; 学科网 (2) 求 的最小值; 学科网 (3) 设函数 ,直接写出(不需给出演算步骤)不等式 的解集. 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网 学科网