数学解析几何高考题,高考解析几何大题100道
1.按照我的思路,然后怎么写这个数学解析几何题呢?如果我的思路有问题,请耐心的朋友指点一下。
2.高考数学解析几何大题第一问错了,然后第二问联立得是错误的方程,然后方法都是对的,还会给分吗?
3.2011 四川高考数学卷的第21题 解析几何的 第二小问 如果用蝴蝶定理来求证 该怎样解答? PLEASE。
4.2022高考数学题及答案(2020高考数学题及答案解析)
5.解析几何,求解
6.浙江2011高考数学解析几何,为什么k1+k2 k1k2求出来后,就得到后面那个算式
先看第一个问题。楼主做错了,主要是判断情况时出现的错误。
首先P、Q、R三点都在圆上,故到圆心的距离都相等。不妨设圆心C为(a,b).
则有:CM=CQ=CR==》?同时平方
既是:(2-a)^2+b^2=a^2+(1-b)^2=(m-a)^2+b^2?一式
由此可得,4a-2b=3二式
又因为cp直线的斜率为-1。有b/(m-a)=-1所以有m=a+b?三式
把m=a+b带入一式。有(2-a)^2=b^2有2-a=+b(要舍去。因为变形既是a+b=2。也就是m点为Q点。错误)?或者2-a=-b四式
由二、四式有a=-0.5b=-2.5
所以圆的方程为(x+0.5)^2+(y+2.5)^2=12.5
如下图:
问题二。
第二问有一定的技巧,这里不用设点,那样未知数太多,会比较麻烦。
观察图知。四边形的对角线互相垂直。故面积为对角线之积(用两个三角形的面积之和推导)。
设四边形的对角线长度分别m、n。则面积为mn/2。
技巧来了。用不等式mn小于等于(m^2+n^2)/2.m=n时。取等号。
故由该不等式知。当四边形的对角线相等时。有面积最大
也就是四边形为等腰梯形时面积最大。
下面的工作,就是算出对角巷的长度(当m=n时)。m=n=37开平方?(这个就麻烦你自己算了)
故最大面积为mn=37?/2
按照我的思路,然后怎么写这个数学解析几何题呢?如果我的思路有问题,请耐心的朋友指点一下。
高考文科数学大题里,解析几何和导数相比较当然是解析几何比较难了。
高中解析几何已经是学习的相当深入,用代数方法解决几何问题本来就有点综合学科的意思,题目可以无限难,方法不对甚至无法开始,导致全部分数扣光。
而高中导数是原来高等数学下放下来的,算是微积分的初步知识,从要求上来说就比较初级,掌握基本的公式和解题思路,通常错误也就是计算错误,只要公式没有用错,通常还是能得一些分的。
高考数学解析几何大题第一问错了,然后第二问联立得是错误的方程,然后方法都是对的,还会给分吗?
思路没问题,但是技巧有问题,m点的坐标式可以用p,q两点的坐标来换算,即m点坐标(x1+x2)/2,(y1+y2)/2.
然后还有个技巧就是,你已经化简出了x1x2+y1y2-2-2(x+y)=0这种式子,那么就要想办法消除掉其中的x1x2+y1y2,利用x1^2+y1^2=1和x2^2+y2^2=1,将两个式子相加,就可以得到(x1+x2)^2-2x1x2+(y1+y2)^2-2y1y2=8.
将刚刚得到的式子和你的式子乘以2后相减,就得到了一个关于x1+x2的方程。然后我们用x=(x1+x2)/2,y=(y1+y2)/2再代入计算,一个关于x和y的方程就出来了。
2011 四川高考数学卷的第21题 解析几何的 第二小问 如果用蝴蝶定理来求证 该怎样解答? PLEASE。
不给分,大题改卷第一眼先看结果,结果对了看过程,过程没问题满分,过程有问题砍到出问题的步骤给分。你这联立方程式都错了,可以说是答非所问,不给分理所当然。当然老师也许有那么一丝丝可能给点笔水分。
2022高考数学题及答案(2020高考数学题及答案解析)
(18)本小题主要考查直线与椭圆的基本知识,考查分析问题和解决问题的能力。满分15分。 (Ⅰ)解:椭圆方程为x2/a2+(y-r)2/b2=1 焦点坐标为 (Ⅱ)证明:将直线CD的方程y=k?x代入椭圆方程,得b2x2+a2(k1x-r)2=a2b2, 整理,得 (b2+a2k12)x2-2k1a2rx+(a2r2-a2b2)=0 根据韦达定理,得 x1+x2=2k1a2r/(b2+a2k12), x1·x2=(a2r2-a2b2)/( b2+a2k12), 所以x1x2/(x1+x2)=( r2-b2)/2k1r ① 将直线GH的方程y=k2x代入椭圆方程,同理可得 x3x4/(x3+x4)=( r2-b2)/2k2r ② 由①,②得k1x1x2/(x1+x2)=(r2-b2/2r=k2x3x4/(x3+x4) 所以结论成立。 (Ⅲ)证明:设点P(p,o),点Q(q,o)。 由C,P,H共线,得 (x1-p)/( x4-p)=k1x1/k2x4 解得P=(k1-k2)x1x4/(k1x1-k2x4) 由D,Q,G共线,同理可得 q=(k1-k2)x2x3/(k1x2-k2x3) 由k1x1x2/(x1+x2)=k2x3x4/(x3+x4),变形得: x2x3/(k1x2-k2x3)=x1x4/(k1x1-k2x4) 即:(k1-k2)x2x3/(k1x2-k2x3)=(k1-k2)x1x4/(k1x1-k2x4) 所以 |p|=|q|,即,|OP|=|OQ|。
解析几何,求解
今天小编辑给各位分享2022高考数学题及答案的知识,其中也会对2020高考数学题及答案解析分析解答,如果能解决你想了解的问题,关注本站哦。
2022年全国乙卷高考数学试题答案
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的,以下是我整理的2022年全国乙卷高考数学试题答案,希望可以提供给大家进行参考和借鉴。
2022年全国乙卷高考数学试题答案
全面认识你自己
认识自己是职业定位、自我定位的前提,也是科学选择专业的关键。
首先,对自我的认识来源于自我评价。考生对自己兴趣、性格、天赋的认知是志愿选择的一个重要依据。但需要注意的是,我们的教育一直专注于学生智力的培养,而忽视学生自身的认知和个性的发展,可能造成学生对自我认识的不足和偏差。如,一些考生完全有能力选择更好的大学、更有挑战性的专业,但可能因为对自我评价过低而错失机会。
其次是他人评价。特别是家长,班主任老师的评价相对全面。但是这种评价可能带有浓厚个人喜好的色彩,有失客观,而且对学生内在价值动力、天赋能力等极其重要的内在心理特质缺乏真正的了解,因此,在参考他人意见的时候需要谨慎对待。
最后是心理测评,即通过心理测评来指导高考志愿填报。在国内,高考志愿测评是一个新鲜事物,其测评的结果较为全面和科学,渐渐地为更多的家长和教育机构所接受。考生如果希望在志愿填报时就对今后的长期发展有个较好的规划,可以尝试选择相关的测试系统帮助分析,进而对专业的选择给出一定的指导建议。
高考志愿填报无疑对考生的一生影响深远,因此,考生在专业选择时应该特别注意考虑的全面性--专业是否是自己兴趣喜欢的?专业是否自己性格适合的?专业是否是自己天赋能力擅长的?只有在三者之间找到一个最佳的结合点,考生才能在自己的人生路上迈出正确、关键的一步。
与此同时,尽管高考志愿测评技术在国内发展较快,但哪怕是一些较权威的专业测评,也有其局限性,他们只能通过网络平台为考生提供测评服务,学生只有登陆其网站才能参加测评,这使得不少上网条件受到限制的考生难以通过测试对自己进行分析。
此外,市面上不少测评软件仅仅只是从兴趣的维度对考生进行考察,相对于性格和天赋,兴趣的稳定性欠佳,这样得出的结果对考生就没有太大的指导意义。
在此,也提醒考生,选择测评软件时,需要先对测评体系有个系统的了解。
考生个人特征情况
考生个人特征如兴趣、特长、志向、能力、职业价值观等。
兴趣——兴趣是指一个人力求认识、掌握某种事物并经常参与该种活动的心理倾向。据有关专家研究表明,如果一个人对某种工作有兴趣,他能发挥其全部才能的80%~90%,并且能长时间保持高效率而不知疲惫。相反,如果他对某种工作没有兴趣,则只能发挥全部才能的20%~30%,还容易精疲力竭。而具体在进行专业选择时,对于自己兴趣的考查,主要看当前潜在的职业兴趣和对各门学科的学科兴趣。
特长——选择了符合自己特长的专业,无疑在未来的学习、工作中可以扬长避短,充分发挥自己的聪明才智。俗话说,最了解自己的还是自己。每个考生部应认真做一次自我分析,看看到底最喜欢哪一门学科?是动手能力强,还是更擅长动脑?表象思维与逻辑思维能力哪一个更有优势?组织管理能力、艺术修养、口头与书面表达能力,在同学中处于什么地位?等等。这些都是你选择志愿的参考因素。
志向——各人的志向、理想是激发自己奋发努力的动力之一,也是成就事业不可缺少的条件之一。
能力——能力可以分为一般能力和特殊能力。一般能力包括观察力、记忆力、注意力、思维力、想像力等。具体在选择专业填报志愿时,考生需要知道的是,有些专业是需要考生具备一些特殊能力才能报考和学习的,如美术、音乐、等。但是就其他大部分专业来说,对学生能力的要求是不超出一般范围的。另外,在学生所处年龄这个阶段,可以说,他们能力发展的空间是相当大的,尤其进入大学阶段后,随着眼界的扩大,知识的扩展、锻炼能力机会的增加,他们的能力会不断得到提高,所以,在专业选择时,虽然能力是一个需要考虑的因素,但是不宜作为一个绝对化的考虑因素。
职业价值观;一般说来,职业价值观与理想基本是一致的,但无论是以什么专业作为理想专业的人,职业价值体系中均应以充分体现自己的兴趣,发挥个人能力及个性为第一位,然后,再考虑一些外在因素,如这个专业将来对应职业的工资、社会地位、稳定性等。在进行专业选择时,考生家庭中的成员最好就这个方面的问题进行认真的讨论,弄清个人和家庭的职业价值观是什么,再作出专业和将来的职业选择。
2022年全国乙卷高考数学试题答案相关文章:
★2022高考全国乙卷试题及答案
★2022高考理科数学乙卷试题解析
★2022年全国乙卷高考理科数学
★2022年全国乙卷文科数学卷真题公布
★2022年高考数学试题及答案
★2022年全国乙卷高考数学真题及答案
★2022年全国理科数学卷试题答案及解析
★2022全国Ⅰ卷高考数学试题及参考答案一览
★2022年英语全国乙卷试题及答案
★2022年高考乙卷数学真题试卷
2022年全国新高考1卷数学试题及答案解析
数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案解析。希望可以帮助大家。
全国新高考1卷数学试题
全国新高考1卷数学试题答案解析
高考数学复习主干知识点汇总:
因为基础知识融汇于主干内容之中,主干内容又是整个学科知识体系的重要支撑,理所当然是高考的重之中重。主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:
1.函数
函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想方法和综合应用。
2.三角函数
三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。
3.立体几何
承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。
4.数列与极限
数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。
5.解析几何
直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。
2022年全国新高考1卷数学试题及答案解析相关文章:
★2022高考甲卷数学真题试卷及答案
★2022年新高考Ⅱ卷数学真题试卷及答案
★2022高考全国甲卷数学试题及答案
★2022高考数学大题题型总结
★2022全国乙卷理科数学真题及答案解析
★2022年全国乙卷高考数学试卷
★2022年新高考1卷语文真题及答案解析
★全国新高考一卷2022语文试题及答案一览
★2022江西高考文科数学试题及答案
★2022全国新高考II卷语文试题及答案解析
2022年全国新高考1卷数学试题及答案详解
高考数学命题贯彻高考内容改革的要求,依据高中课程标准命题,进一步增强考试与教学的衔接。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案详解。希望可以帮助大家。
全国新高考1卷数学试题
全国新高考1卷数学答案详解
2022高考数学知识点总结
1.定义:
用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.考点:
①解一元一次不等式
②根据具体问题中的数量关系列不等式并解决简单实际问题
③用数轴表示一元一次不等式的解集
考点一:集合与简易逻辑
集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量
一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.
考点四:数列与不等式
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.
一、排列
1定义
从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。
从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.
2排列数的公式与性质
排列数的公式:Amn=n
特例:当m=n时,Amn=n!=n×3×2×1
规定:0!=1
二、组合
1定义
从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合
从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。
2比较与鉴别
由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。
排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。
三、排列组合与二项式定理知识点
1.计数原理知识点
①乘法原理:N=n1·n2·n3·nM②加法原理:N=n1+n2+n3++nM
2.排列与组合
Anm=n-=n!/!Ann=n!
Cnm=n!/!m!
Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?6?1k!=!-k!
3.排列组合混合题的解题原则:先选后排,先分再排
排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
捆绑法
插空法间接法和去杂法等等
在求解排列与组合应用问题时,应注意:
把具体问题转化或归结为排列或组合问题;
通过分析确定运用分类计数原理还是分步计数原理;
分析题目条件,避免“选取”时重复和遗漏;
列出式子计算和作答.
经常运用的数学思想是:
①分类讨论思想;②转化思想;③对称思想.
4.二项式定理知识点:
①n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3++Cnran-rbr+-+Cnn-1abn-1+Cnnbn
特别地:n=1+Cn1x+Cn2x2++Cnrxr++Cnnxn
②主要性质和主要结论:对称性Cnm=Cnn-m
二项式系数在中间。
所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4++Cnr++Cnn=2n
奇数项二项式系数的和=偶数项而是系数的和
Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1
③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。
5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。
6.注意二项式系数与项的系数的区别,在求某几项的系数的和时注意赋值法的应用。
不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。
诸如集合问题,方程的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
知识整合
1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。
2。整式不等式的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。
3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。
4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差→变形→判断符号。
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;
数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力
2022年全国新高考1卷数学试题及答案详解相关文章:
★2022高考北京卷数学真题及答案解析
★2022高考甲卷数学真题试卷及答案
★2022北京卷高考文科数学试题及答案解析
★2022高考全国甲卷数学试题及答案
★2022年新高考Ⅱ卷数学真题试卷及答案
★2022全国乙卷理科数学真题及答案解析
★2022高考数学大题题型总结
★2022年高考全国一卷作文预测及范文
★2022年高考数学必考知识点总结最新
★2022年全国乙卷高考数学试卷
2022年北京高考数学试题及参考答案
相比很多同学在高考过后的第一时间就是找答案核对,虽然知道这样可能会影响心情,但还是忍不住想要对照答案。下面是我为大家整理的关于2022年北京高考数学试题及参考答案,如果喜欢可以分享给身边的朋友喔!
2022年北京高考数学试题
2022年北京高考数学试题参考答案
高考数学答题策略
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
一、会做与得分的关系
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现"会而不对""对而不全"的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的"跳步",使很多人丢失1/3以上得分,代数论证中"以图代证",尽管解题思路正确甚至很巧妙,但是由于不善于把"图形语言"准确地转译为"文字语言",得分少得可怜。只有重视解题过程的语言表述,会做的题才会得分。
二、审题与解题的关系
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。其实只要耐心仔细地审题,准确地把握题目中的关键词与量,从中获取尽可能多的信息,才能迅速找准解题的方向。
三、难题与容易题的关系
拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的'顺序作答。这几年,数学试题已从"一题把关"转为"多题把关",因此解答题都设置了层次分明的"台阶",入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有"咬手"的关卡,看似难做的题也有可得分之处。所以考试中看到容易的题目不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。
四、快与准的关系
在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可以不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
2022年北京高考数学试题及参考答案相关文章:
★2022数学高考题及答案
★2022新高考数学Ⅰ卷试卷及参考答案
★2022年全国Ⅰ卷高考数学试题及参考答案公布
★2022全国一卷高考数学试题及答案
★2022新高考全国一卷数学试卷及答案解析
★2022年高考数学试题及答案
★2022全国新高考Ⅰ卷数学卷完整试题及答案一览
★2022新高考全国一卷数学试卷答案解析
★2022年高考数学全国乙卷试题答案
★2022新高考数学试题及答案详解
浙江2011高考数学解析几何,为什么k1+k2 k1k2求出来后,就得到后面那个算式
高中数学解析几何运算,很多同学突破不了,然而解析几何的题对高考的占比又很大。老师在这里总结一些解题技巧。
高中数学解析几何解题方法我们先来分析一下解析几何高考的命题趋势:
(1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,占总分值的20%左右。
(2)整体平衡,重点突出:其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既留意全面,更留意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。近几年新教材高考对解析几何内容的考查主要集中在如下几个类型:
① 求曲线方程(类型确定、类型未定);
②直线与圆锥曲线的交点题目(含切线题目);
③与曲线有关的最(极)值题目;
④与曲线有关的几何证实(对称性或求对称曲线、平行、垂直);
⑤探求曲线方程中几何量及参数间的数目特征;
(3)能力立意,渗透数学思想:一些虽是常见的基本题型,但假如借助于数形结合的思想,就能快速正确的得到答案。
(4)题型新奇,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。加大探索性题型的分量。
在近年高考中,对直线与圆内容的考查主要分两部分:
(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:
①与本章概念(倾斜角、斜率、夹角、间隔、平行与垂直、线性规划等)有关的题目;
②对痴光目(包括关于点对称,关于直线对称)要熟记解法;
③与圆的位置有关的题目,其常规方法是研究圆心到直线的间隔.
以及其他“标准件”类型的基础题。
(2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大。
预计在今后一、二年内,高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化。
相比较而言,圆锥曲线内容是平面解析几何的核心内容,因而是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题和一道解答题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,直线与圆锥的位置关系等,从近十年高考试题看大致有以下三类:
(1)考查圆锥曲线的概念与性质;
(2)求曲线方程和求轨迹;
(3)关于直线与圆及圆锥曲线的位置关系的题目.
选择题主要以椭圆、双曲线为考查对象,填空题以抛物线为考查对象,解答题以考查直线与圆锥曲线的位置关系为主,对于求曲线方程和求轨迹的题,高考一般不给出图形,以考查学生的想象能力、分析题目的能力,从而体现解析几何的基本思想和方法,圆一般不单独考查,总是与直线、圆锥曲线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现.解析几何的解答题一般为困难,近两年都考查了解析几何的基本方法——坐标法以及二次曲线性质的运用的命题趋向要引起我们的重视.
请同学们留意圆锥曲线的定义在解题中的应用,留意解析几何所研究的题目背景平面几何的一些性质.从近两年的试题看,解析几何题有前移的趋势,这就要求考生在基本概念、基本方法、基本技能上多下功夫.参数方程是研究曲线的辅助工具.高考试题中,涉及较多的是参数方程与普通方程互化及等价变换的数学思想方法。
考查的重点要落在轨迹方程、直线与圆锥曲线的位置关系,往往是通过直线与圆锥曲线方程的联立、消元,借助于韦达定理代人、向量搭桥建立等量关系。考查题型涉及的知识点题目有求曲线方程题目、参数的取值范围题目、最值题目、定值题目、直线过定点题目、对痴光目等,所以我们要把握这些题目的基本解法。
命题特别留意对思维严密性的考查,解题时需要留意考虑以下几个题目:
1、设曲线方程时看清焦点在哪条坐标轴上;留意方程待定形式及参数方程的使用。
2、直线的斜率存在与不存在、斜率为零,相交题目留意“D”的影响等。
3、命题结论给出的方式:搞清题目所给的几个小题是并列关系还是递进关系。假如前后小题各自有强化条件,则为并列关系,前面小题结论后面小题不能用;不过考题经常给出的是递进关系,有(1)、第一问求曲线方程、第二问讨论直线和圆锥曲线的位置关系,(2)第一问求离心率、第二问结合圆锥曲线性质求曲线方程,(3)探索型题目等。解题时要根据不同情况考虑施加不同的解答技巧。
4、题目条件如与向量知识结合,也要留意向量的给出形式:
(1)、直接反映图形位置关系和性质的,如?=0,=( ),λ,以及过三角形“四心”的向量表达式等;
(2)、=λ:假如已知M的坐标,按向量展开;假如未知M的坐标,按定比分点公式代进表示M点坐标。
(3)、若题目条件由多个向量表达式给出,则考虑其图形特征(数形结合)。
5、考虑圆锥曲线的第一定义、第二定义的区别使用,留意圆锥曲线的性质的应用。
6、留意数形结合,特别留意图形反映的平面几何性质。
7、解析几何题的另一个考查的重点就是学生的基本运算能力,所以解析几何考题学生普遍感觉较难对付。为此我们有必要在平常的解题变形的过程中,发现积累一些式子的常用变形技巧,如假分式的分离技巧,对痴规换的技巧,构造对称式用韦达定理代进的技巧,构造均值不等式的变形技巧等,以便提升解题速度。
8、平面解析几何与平面向量都具有数与形结合的特征,所以这两者多有结合,在它们的知识点交汇处命题,也是高考命题的一大亮点.直线与圆锥曲线的位置关系题目是常考常新、经久不衰的一个考查重点,另外,圆锥曲线中参数的取值范围题目、最值题目、定值题目、对痴光目等综合性题目也是高考的常考题型.解析几何题一般来说计算量较大且有一定的技巧性,需要“精打细算”,近几年解析几何题目的难度有所降低,但还是一个综合性较强的题目,对考生的意志品质和数学机智都是一种考验,是高考试题中区分度较大的一个题目,有可能作为今年高考的一个压轴题出现.
例1已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(1)若△POM的面积为,求向量与的夹角。
(2)试证实直线PQ恒过一个定点。
高考命题虽说千变万化,但只要找出相应的一些规律,我们就大胆地猜想高考解答题命题的一些思路和趋势,指导我们后面的温习。对待高考,我们应该采取正确的态度,再大胆猜测的同时,更要注重基础知识的进一步巩固,多做一些简单的综合练习,进步自己的解题能力.
一、高考温习建议:
本章内容是高考重点考查的内容,在每年的高考考试卷中占总分的15%左釉冬分值一直保持稳定,一般有2-3道客观题和一道解答题。选择题、填空题不仅重视基础知识和基本方法,而且具有一定的灵活性与综合性,难度以中档题居多,解答题注重考生对基本方法,数学思想的理解、把握和灵活运用,综合性强,难度较大,常作为把关题或压轴题,其重点是直线与圆锥曲线的位置关系,求曲线方程,关于圆锥曲线的最值题目。考查数形结合、等价转换、分类讨论、函数与方程、逻辑推理诸方面的能力,对思维能力、思维方法的要求较高。
近几年,解析几何考查的热门有以下几个
――求曲线方程或点的轨迹
――求参数的取值范围
――求值域或最值
――直线与圆锥曲线的位置关系
以上几个题目往往是相互交叉的,例如求轨迹方程时就要考虑参数的范围,而参数范围题目或者最值题目,又要结合直线与圆锥曲线关系进行。
总结近几年的高考试题,温习时应留意以下题目:
1、重点把握椭圆、双曲线、抛物线的定义或性质
这是由于椭圆、双曲线、抛物线的定义和性质是本章的基石,高考所考的题目都要涉及到这些内容,要善于多角度、多层次不断巩固强化三基,努力促进知识的深化、升华。
2、重视求曲线的方程或曲线的轨迹
曲线的方程或轨迹题目往往是高考解答题的命题对象,而且难度较大,所以要把握求曲线的方程或曲线的轨迹的一般方法:定义法、直接法、待定系数法、代进法(中间变量法)、相关点法等,还应留意与向量、三角等知知趣结合。
3、加强直线与圆锥曲线的位置关系题目的温习
由于直线与圆锥曲线的位置关系一直为高考的热门,这类题目常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直题目,因此分析题目时利用数形结合思想和设而不求法与弦长公式及韦达定理联系往解决题目,这样就加强了对数学各种能力的考查,其中着力抓好“运算关”,增强抽象运算与变形能力。解析几何的解题思路轻易分析出来,往往由于运算不过关中途而废,在学习过程中,应当通过解题,寻求公道运算方案,以及简化运算的基本途径和方法,亲身经历运算困难的发生与克服困难的完整过程,增强解决复杂题目的信心。
4、重视对数学思想、方法进行回纳提炼,达到优化解题思路,简化解题过程的目的。
用好方程思想。解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长题目利用韦达定理进行整体处理,就可简化解题运算量。
用好函数思想,把握坐标法。
二、知识梳理
●求曲线方程或点的轨迹
求曲线的轨迹方程是解析几何的基本题目之一,是高考中的一个热门和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生的创新意识为突破口,注重考查学生的逻辑思维能力、运算能力、分析题目和解决题目的能力,而轨迹方程这一热门,则能很好地反映学生在这些方面能力的把握程度。
下面先容几种常用的方法
(1) 直接法:动点满足的几何条件本身就是一些几何量的等量关系,我们只需把这种关系“翻译”成含x、粉底液哪个牌子好y的等式就得到曲线轨迹方程。
(2) 定义法:其动点的轨迹符合某一基本轨迹的定义,则可根据定义直接求出动点的轨迹方程。
(3) 几何法:若所求的轨迹满足某些几何性质(如线段中垂线、角平分线性质等),可以用几何法,列出几何式,再代进点的坐标较简单。
(4) 相关点法(代进法):有些题目中,某动点满足的条件不便用等式列出,但动点是随着另一动点(称为相关点)而运动的,假如相关点所满足的条件是明显的,这时我们可以用动点坐标表示相关点坐标,再把相关点代进其所满足的方程,即可求得动点的轨迹方程。
(5) 参数法:有时求动点应满足的几何条件不易得出,也无明显的相关点,但却较易发现这个动点的运动经常受到另一个变量(角度、斜率、比值、截距)等的制约,即动点坐标(x、y)中的x、y分别随另一变量的变化而变化,我们可称这个变量为参数,建立轨迹的参数方程,这种方法叫参数法。消往参数,即可得到轨迹普通方程。选定参变量要特别留意它的取值范围对动点坐标取值范围的影响。
(6) 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹题目,这类题目常通过解方程组得出交点(含参数)的坐标,再消往参数求出所求轨迹方程,该法经常与参数法并用。
●求参数范围题目
在解析几何题目中,常用到参数来刻划点和曲线的运动和变化,对于参变量范围的讨论,则需要用到变与不变的相互转化,需要用函数和变量往思考,因此要用函数和方程的思想作指导,利用已知变量的取值范围以及方程的根的状况求出参数的取值范围。
例1、已知椭圆C: 试确定m的范围,使得对于直线l: y = 4x+m 椭圆上有不同的两点关于直线 l 对称。
例2、已知双曲线的中心在原点,右顶点为A(1,0),点P、Q在双曲线的右支上,点M (m , 0 ) 到直线AP的间隔为1,
(1)若直线AP的斜率为k ,且 ,求实数 m 的取值范围
(2)当 时,ΔAPQ的内心恰好是点M,求此双曲线的方程
●值域和最值题目
与解析几何有关的函数的值域或弦长、面积等的最大值、最小值题目是解析几何与函数的综合题目,需要以函数为工具来处理。
解析几何中的最值题目,一般是根据条件列出所求目标――函数的关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法,应用不等式的性质,以及三角函数最值法等求出它的最大值或最小值。另外,还可借助图形,利用数形结正当求最值。
例1、如图,已知抛物线 y2 = 4x 的顶点为O,点A 的坐标为(5,0),倾斜角为π/4的直线 l 与线段OA相交(不过O点或A点),且交抛物线于M、N两点,求△AMN面积最大时直线的方程,并求△AMN的最大面积。
●直线与圆锥曲线关系题目
1、直线与圆锥曲线的位置关系题目,从代数角度转化为一个方程组实解个数研究(如能数形结合,可借助图形的几何性质则较为简便)。即判定直线与圆锥曲线C的位置关系时,可将直线方程带进曲线C的方程,消往y(有时消往x更方便),得到一个关于x的一元方程 ax2 + bx + c = 0
当a=0时,这是一个一次方程,若方程有解,则 l 与C相交,此时只有一个公共点。若C为双曲线,则 l 平行与双曲线的渐进线;若C为抛物线,则 l 平行与抛物线的对称轴。所以当直线与双曲线、抛物线只有一个公共点时,直线和双曲线、抛物线可能相交,也可能相切。
当 a≠0 时,若Δ>0 l与C相交
Δ=0 l与C相切
Δ<0 l与C相离
2、涉及圆锥曲线的弦长,一般用弦长公式结合韦达定理求解。
解决弦中点有两种常用办法:一是利用韦达定理及中点坐标公式;二是利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率的关系(点差法)
中点弦题目就是当直线与圆锥曲线相交时,得到一条显冬进一步研究弦的中点的题目. 中点弦题目是解析几何中的重点和热门题目,在高考试题中经常出现. 解决圆锥曲线的中点弦题目,“点差法”是一个行之有效的方法,“点差法”顾名思义是代点作差的办法. 其步骤可扼要地叙述为:①设出弦的两个端点的坐标;②将端点的坐标代进圆锥曲线方程相减;③得到弦的中点坐标与所在直线的斜率的关系,从而求出直线的方程;④ 作简
要的检验. 本文试图通过对一道高考试题解法的探讨,谈点个人见解.
一、高考试题
椭圆C: + = 1(a> b > 0)的两个焦点为F1,F2,点P在椭圆C上,且PF1⊥F1F2,|PF1|=, |PF2| = .
(1) 求椭圆C的方程;
(2) 若直线l过圆x2 + y2 + 4x - 2y = 0 的圆心M,交椭圆C于A,B两点,窃读,B关于点M对称,求直线l的方程.
二、解题思路
第(1)题的解法不再赘述,答案是:+ = 1,在此基础上研究第(2)题的解法.
1. 运用方程组的思路
设A(x1,y1),B(x2,y2),已知圆的方程为(x + 2)2 + (y - 1)2 = 5,所以圆心M的坐标为(-2,1),从而可设直线l的方程为:y= k(x+ 2)+1.
∴y= k(x+ 2)+ 1,+=1.消y得
(4 + 9k2)x2 + (36k2 + 18k)x + 36k2 + 36k - 27 = 0.
∵ A,B关于点M对称,
∴ = - = -2,解得 k =.
∴ 直线l的方程为:8x - 9y + 25 = 0.
2. 运用“点差法”的思路
已知圆的方程为(x+ 2)2+ (y- 1)2= 5,所以圆心M的坐标为(-2,1).
设A(x1,y1),B(x2,y2),由题意x1≠x2且
+ = 1(1)+= 1(2)
由(1)- (2)得
+ = 0(3)
由于A,B关于点M对称,所以x1 + x2 = -4,y1 + y2 = 2,代进(3)得 k1 = =,所以,直线l的方程为:8x - 9y + 25 = 0. 经检验,所求直线方程符合题意.
三、对两种思路的熟悉
思路1运算较复杂,尤其是消元得到方程这一步,很多学生是不能顺利过关的;思路2运算较简洁,学生易把握. 对于两种思路都必须分析到:直线l经过圆心,而且圆心是弦的中点. 这些方法在考题中经常有所涉及.
四、对“点差法”的思考
1. “点差法”使用条件的反思
“点差法”使用起来较为简洁,那么使用“点差法”的条件是什么?
假设一条直线与曲线mx2 + ny2 = 1(n,m是不为零的常数,且不同时为负数)相交于A,B两点,设A(x1,x2),B(x2,y2),则mx12 + ny12= 1,mx22 + ny22 = 1, 两式相减有:m(x1 - x2)(x1 + x2) = -n(y1 - y2)(y1 + y2). 其中x1+x2与y1 + y2和线段AB的中点坐标有关; 为AB的斜率. 由此可见,知道其中一个可以求出另外一个,意思是说:要用“点差法”,需知道AB的中点和AB的斜率之一才可求另一个. 然后进行扼要的检验.
2. 先容一种处理中点弦题目时的巧妙的独到的解法
例题 已知双曲线x2 - = 1,问是否存在直线l,使得M(1,1)为直线l被双曲线所截弦AB的中点.若存在,求出直线l的方程;若不存在,请说明理由.
由题意得M(1,1)为显读B的中点,可设A(1+ s,1+ t),B(1- s,1- t),(s,t∈T订,由于A,B,M不重合可知, s,t不全为零. 又点A,B在双曲线x2-= 1上,将点的坐标代进方程得
(1+ s)2-= 1(1)(1- s)2-= 1(2)
(1)+ (2) 可得s2= t2 (3)
(1)- (2) 可得t = 2s (4)
将(4)代进(3)可得s= 0,t= 0,不可能,故不存在这样的直线.
这里我们回纳一下解题思路:
已知直线l与圆锥曲线:ax2 + by2 = 1(a,b使得方程为圆锥曲线)相交于A,B两点,设中点为M(m,n),求直线l方程.
解题思路 设A(m+ s,n+ t),B(m - s,n - t), (s,t∈T订,由于A,B,M不重合可知,s,t不全为零. 又点A,B在双曲线ax2 + by2 = 1上,将点的坐标代进方程得a(m + s)2- b(n+ t)2= 1, a(m-s)2 - b(n- t)2= 1.解得:ams = bnt,am2 +s2 = bn2 + t2. (由于这里全是字母运算,表达式复杂,不再求出所有的表达式的具体形式,只是谈一下思路)进一步解出s,t的值,从而知道A,B的坐标,运用两点式求出直线l的方程。
在下列网页所给参考答案中
在用x0表示出k1+k2和k1*k2后的解答思路:
(1)首先求出A、B的横坐标
由y=kx-kx0+x0^2 且y=x^2消去y并化简
x^2-kx+kx0-x0^2=0
因x0一定是它的根,而两根之积是kx0-x0^2,另一根是k-x0
k=k1时,得A的横坐标x1=k1-x0
k=k2时,得B的横坐标x1=k2-x0
(2)计算AB直线斜率:k(AB)=(x1^2-x2^2)/(x1-x2)=x1+x2=k1+k2-2x0=...
计算MP直线的斜率:k(MP)=(x0^2-4)/x0
(3)由垂直关系列方程解得x0,最后得出结果.
希望能帮到你!
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。