1.高中数学复数知识点

2.高三年级数学知识点归纳笔记

3.高中虚数i的知识点有哪些?

高考复数知识点,高考中复数常考的题型总结

单数复数英语知识点如下:

1、单数复数主要是英语上的单数和复数的区分。

2、正确的区分单数和复数,要抓住关键点,就是看名词前面的数词。

3、说一个简单的,比如一个苹果就是单数,两个苹果就要用复数,关于单数和复数,主要是针对名词来区分的。

4、一个苹果就是anapple一本书就是abook,两个苹果就是twoapples,很多苹果就是manyapples。

单数复数构成

(1)元音字母和大多数除s,z,x,sh,ch之外的辅音字母(或字母组合)直接加-s,清辅音后的s读作/s/,元音和浊辅音后的s读作/z/。如:bag-bags,biscuit-biscuits,egg-eggs。当单数名词结尾为se,ze,ge,ce时(其词尾辅音为/s,z,?,?/等),加s后读作/iz/。

(2)当单数名词结尾为s,z,x,sh,软音ch时(其词尾辅音为/s,z,?,?/等)加-es(读/iz/),如:box-boxes,peach-peaches。(o有时也是,但es读音为/z/如hero-heroes)例外:stomach-stomachs(因ch读作/k/)。

单数复数的使用

在英语中,名词都有单复数的变化。单数表示“一”,复数表示“多于一”的概念。也就是通过一个单词,以(an)apple出现,你就知道一定是一个,而apples出现,一定是多余一个,都不需要别人告诉你是几个。

名词的复数一般都是在名词后面加s,以发咝擦音的ch,sh,ge,z,s结尾时,要加es,以辅音字母加y结尾的名词,则要把y去i再加上es。

还有一些不规则的词,比如police,看上去是单数,但是却会以复数对待,认为police是一个整体。他们叫集体名词。在一般现在时中,单数的名词就意味着动词也要变化成单数的形式。这就是所谓的“三单”。

高中数学复数知识点

高考数学复习点拨:复数的几种常见题型

复数的几种常见题型

山东 史纪卿 鲁彩凌

一、利用复数的代数形式

由复数的代数形式为知,用代入法解题是最基本且常用的方法.

例1 已知,且,若,则的最大值是(  )

A.6 B.5 C.4 D.3

解析:设,,那么.

,,,

,时,,故选C.

二、利用复数相等的充要条件

在复数集中,任意取两个数,,,且.

例2 已知复数,求实数使.

解:,

因为都是实数,所以由,得

两式相加,整理得.

解得,,

对应得,.

所以,所求实数为,或,.

三、利用复数除法法则以及虚数,的运算性质

1.形如,可以乘以分母的共轭复数,使分母"实数化";

2.熟记一些常用的结果:

(1)的周期性;

(2);

(3),;

(4);

(5)设,则的性质有:

①;

②,;

③.

例3 设,则集合中元素的个数是(  )

A.1 B.2 C.3 D.无穷多个

解析:因为,

所以当,,,时,,

集合,故答案为C.

四、利用共轭复数

复数与复数互为共轭复数.

例4 若是方程的一个根,求的值.

解:因为是实数,所以两根之和是实数,两根之积是实数;

又因为是方程的一个根,因此满足条件的另一个根必定是它的共轭复数,因此,,解得.

另解:把代入方程得,根据复数相等的充要条件,得且,解得.

注:两共轭复数的积:,即两共轭复数的积等于复数模的平方.

例5 若,,则的(  )

A.纯虚数 B.实数 C.虚数 D.不能确定

解析:若一个数的共轭复数是它的本身,则这个数是实数.

由,可知为实数.

故答案选B.

五、利用复数的几何意义

1.利用复数的模

复数的模.

例6 已和,求.

解:.

注:如果先化简再求模就会增大计算量.

2.利用复数加法及减法的几何意义

复数的加(减)法可按向量的平行四边(三角)形法则进行运算.

例7 设复数,满足,,求.

解:根据题意画出如图所示的平行四边形,

所以,.

因此,,.

得.

我们看到上面的解题方法互相关联,因此在解题时,要注意灵活解题,综合运用所学知识.来源于 style="font-size: 18px;font-weight: bold;border-left: 4px solid #a10d00;margin: 10px 0px 15px 0px;padding: 10px 0 10px 20px;background: #f1dada;">高三年级数学知识点归纳笔记

高中数学复数

复数是为了扩充数系和解类似x^2+1=0这样的无实数解方程而引入的,引入之后自然要看他有哪些用途,如可简化问题,圆的方程|z|=R,形式简单,证明多项式基本定理即证明像一元二次方程有两个复数解,若是关于x的n次的式子就是n个复数解,引入复数证明了长达几百年的n次一元方程根的个数问题。

现在高中的内容复数实用性不大,主要是估计为了考察知识的全面性才学的,起码知道有复数这回事,别人说起来能了解一点。由于只要求基本运算,内容不是很多,有联系的是方程,曲线轨迹,解析几何,如果学好的话,用复数法解题和向量法一样能简化计算过程。

高中数学知识点总结

复数是高中代数的重要内容,在高考试题中约占8%-10%,一般的出一道基础题和一道中档题,经常与三角、解析几何、方程、不等式等知识综合.本章主要内容是复数的概念,复数的代数、几何、三角表示方法以及复数的运算.方程、方程组,数形结合,分域讨论,等价转化的数学思想与方法在本章中有突出的体现.而复数是代数,三角,解析几何知识,相互转化的枢纽,这对拓宽学生思路,提高学生解综合习题能力是有益的.数、式的运算和解方程,方程组,不等式是学好本章必须具有的基本技能.简化运算的意识也应进一步加强. 在本章学习结束时,应该明确对二次三项式的因式分解和解一元二次方程与二项方程可以画上圆满的句号了,对向量的运算、曲线的复数形式的方程、复数集中的数列等边缘性的知识还有待于进一步的研究. 1.知识网络图 2.复数中的难点 (1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明. (2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练. (3)复数的辐角主值的求法. (4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会. 3.复数中的重点 (1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点. (2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容. (3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容. (4)复数集中一元二次方程和二项方程的解法。

.。

高中虚数题

LZ,这题怎么搞的,主要思路倒还是不难判断的,但就是很繁琐,用了很多夸张的东西,实在做得我好苦啊!!!

答案是根号2么?

我尝试过多种方法,想过直接以三角形是通分化简,实在太繁琐;想过复数模的不等式,也做不下去;想来想去只能以这个公式做下去了:

|f(z)|^2=f(z)·f(z)拔

不过后面用的东西实在是超过高中内容的,你确认没有打错或者说题目出错么?

那么我是这么解的:

依照上述公式代入化简······,得:

|f(z)|=大根号下{5+2(z^2+z拔^2)+[2(z^2+z拔^2)+3(z+z拔)+9]/(5+2(z+z拔))}

化简过程中要用到共轭复数的性质,这你应该晓得吧,

那么,因为

|z|=1

所以设

z=cosx+isinx,x为任意实数(复数的三角形式)

由利莫夫定理,

z拔=cosx-isinx

z^2=cos2x+isin2x

z拔^2=cos2x-isin2x

代入,化简······

又令cosx=t,则

|f(z)|=大根号下{8t^2+1+(8t^2+6t+5)/(4t+5)},t在闭区间[-1,1]

接下来的工作就化为函数求极值了,但鉴于初等数学的方法不好做(什么换元啥的,至少我做不下去,次数较高),虽然高等数学的方法也不见得方便,但我还是这么解下去的:

对关于t的这个函数求导,令导数为零,的关于t的一元三次方程:

128t^3+336t^2+240t+5=0

我参考了网上一元三次方程的求根公式,用计算器大致得到

cosx=t=-0.02147361495

把它再代回|f(z)|,得到

(|f(z)|^2)min约=1.995700028

所以大致等于 根号2

辛苦啊···,但搞了半天还不是正解,唉···再次建议LZ看下题目有没有问题

5分太少啦!!!

我建议你追加悬赏,请其他高手来解,说不定他们有正确的解法。

希望对你有帮助,加油!

高中数学知识点及公式大全

这个不知道行不行啊?1、 函数 函数是历年高考命题的重点, *** 、函数的定义域、值域、图象、奇偶性、单调性、周 期性、最值、反函数以及具体函数的图象及性质在高考试题中屡见不鲜.因此须注意以下几点.(1) *** 是近代数学中最基本的概念之一, *** 观点渗透于中学数学内容的各个方面,所以我们应弄懂 *** 的概念,掌握 *** 元素的性质,熟练地进行 *** 的交、并、补运算.同时,应准确地理解以 *** 形式出现的数学语言和符号.(2)函数是中学中最重要的内容之一,主要从定义、图象、性质三方面加以研究.在复习时要全面掌握、透彻理解每一个知识点.为了提高复习质量,我们提出下述几个问题:①掌握图象变换的常用方法(参照南师大第一学期教材图象变换一节)特别注意:凡变换均在自变量 上进行.②求函数的最值是一种重要的题型.要掌握函数最值的求法,特别注意二次函数在定区间上的最值问题以及有些问题可能隐藏范围,因此范围问题是二次函数最值的关键.另外二次分式函数的最值亦应引起注意,它的基本解法是“ ”法,当然有一部分可以转化为函数 的形式,而后与基本不等式相联系,或用函数的单调性求解.③学会解简单的函数方程,认真对待指数或对数中含参数问题的求解方法,特别注意对数的真数必须“>0”,注意方程求解时的等价性.2、 三角 三角包括两部分内容:三角函数和两角和与差的三角函数.三角函数主要考查三角函数的性质、图象变换、求函数解析式、最小正周期等. 两角和与差的三角函数中公式较多,应在掌握这些公式的内在联系及推导过程的基础上,理解并熟悉这些公式.特别注意以下几个问题:(1)和、差、倍、半角公式都是用单角的三角函数表示复角(和、差、倍、半角)的三角函数.这就决定了这些公式应用的广泛性,即这些公式可以将三角函数统一成单角的三角函数.(2)了解公式中角的取值范围,凡使公式中某个三角函数或某个式子失去意义的角,都不适合公式.例如: ( )类似还有一些,请自己注意.(3)半角公式中的无理表达式前面的符号取舍,由公式左端的三角函数中角的范围决定,半角正切公式的有理表达式中,无需选择符合,但 与 的符合是一致的.(4)掌握公式的正用、反用、变形用及在特定条件下用,它可以提高思维起点,缩短思维线路,从而使运算流畅自然.例如: = ; ; ; .(5)三角函数式的化简与求值,这是中学数学中重要内容之一,并且与解三角形相 *** ,有的还与复数的三角形式运算相联系,因此须注意常用方法和技巧:切割化弦、升降幂、和积互化、“1”的互化、辅助元素法等.3、 不等式 有关不等式的高考试题分布极为广泛,在客观题中主要考查不等式的性质、简单不等式的解法以及均值不等式的初步应用.经常以比较大小、求不等式的解集、求函数的定义域、值域、最值等形式出现.在中档题中,求解不等式与分类讨论相关联;特别是近几年来强调考查逻辑推理能力,增加了一个代数推理题,也和不等式的证明相关联.在压轴题中,无论函数题、还是解析几何题,也往往需要使用不等式的有关知识.在复习中应注意下述几个问题:(1)掌握比较大小的常用方法:作差、作商、平方作差、图象法.(2)熟练掌握用均值不等式求最值,必须注意三个条件:一正;二定;三相等.三者缺一不可.(3)把握解含参数的不等式的注意事项 解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:① 在不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.② 在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进 行讨论.③ 当解集的边界值含参数时,则需对零值的顺序进行讨论.4、 数列 本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;计算 时,应分为 时, , 时, ;求一般数列的和时还应考虑字母的取值或项数的奇偶性.④ 整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整 体思想求解.(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.5、 复数 高考试题中有关复数的题目的内容比较分散,有的是考查复数概念的,有的是考查复数运算的,有的是考查复。

高中虚数i的知识点有哪些?

1.高三年级数学知识点归纳笔记 篇一

1.集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

 2.函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用

 3.数列:数列的有关概念、等差数列、等比数列、数列求通项、求和

 4.三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用

 5.平面向量:初等运算、坐标运算、数量积及其应用

 6.不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

 7.直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

 8.圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

 9.直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

 10.排列、组合和概率:排列、组合应用题、二项式定理及其应用

 11.概率与统计:概率、分布列、期望、方差、抽样、正态分布

 12.导数:导数的概念、求导、导数的应用

 13.复数:复数的概念与运算

2.高三年级数学知识点归纳笔记 篇二

1、解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

 2、整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

 3、在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

 4、证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。

3.高三年级数学知识点归纳笔记 篇三

反三角函数:

 y=arcsin(x),定义域[-1,1],值域[-π/2,π/2]图象用红色线条;

 y=arccos(x),定义域[-1,1],值域[0,π],图象用蓝色线条;

 y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;

 sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx

 其他公式:

 三角函数其他公式

 arcsin(-x)=-arcsinx

 arccos(-x)=π-arccosx

 arctan(-x)=-arctanx

 arccot(-x)=π-arccotx

 arcsinx+arccosx=π/2=arctanx+arccotx

 sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

 当x∈[—π/2,π/2]时,有arcsin(sinx)=x

 当x∈[0,π],arccos(cosx)=x

 x∈(—π/2,π/2),arctan(tanx)=x

 x∈(0,π),arccot(cotx)=x

 x〉0,arctanx=π/2-arctan1/x,arccotx

4.高三年级数学知识点归纳笔记 篇四

一、充分条件和必要条件

 当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。

 二、充分条件、必要条件的常用判断法

 1.定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可

 2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

 3.集合法

 在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:

 若A?B,则p是q的充分条件。

 若A?B,则p是q的必要条件。

 若A=B,则p是q的充要条件。

 若A?B,且B?A,则p是q的既不充分也不必要条件。

 三、知识扩展

 1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:

 (1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;

 (2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;

 (3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。

 2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。

5.高三年级数学知识点归纳笔记 篇五

直线、平面、简单多面体

 1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算

 2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线.

 3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.

 4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.

 如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),

 如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心.

 5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥三棱柱平行六面体

 6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.

 正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体.

 7.球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.

6.高三年级数学知识点归纳笔记 篇六

直线和圆

 1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式(为直线的方向向量).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况

 2.知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点

 直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等直线的斜率为-1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相等直线的斜率为或直线过原点.

 在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.

 3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是

 4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、解.

 5.圆的方程:最简方程;标准方程;

 6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”

 如果点在圆外,那么上述直线方程表示过点两切线上两切点的“切点弦”方程.

 如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程,(为圆心到直线的距离).

 7.曲线与的交点坐标方程组的解;

 过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线方程.

高中虚数i的知识点如下:

1、虚数单位i,它的平方等于-1,即i2=-1。

2、纯虚数当a=0且b0时的复数a+bi,即bi。

3、复数a+bi的实部与虚部a叫做复数的实部,b叫做虚部(注意a,b都是实数)

4、两个复数不能比较大小,只能由定义判断它们相等或不相等。

5、实数空间与虚数空间数学上的转换方式叫作傅立叶变换,它在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。