1.数学怎么画立体几何图每次做题目不知道怎么画图,画

2.高中数学立体几何怎么学好

3.高考理科数学,立体几何,棱锥与外接球问题

4.立体几何入门指南

5.高中数学:立体几何如何画交线和截面?急!!!

2014高考数学立体几何,2018高考立体几何

高考数学六道大题的题型是:三角函数,概率,立体几何,函数,数列,解析几何。

1、三角函数。是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。

2、概率。它是反映随机事件出现的可能性大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。

3、立体几何。是3维欧氏空间的几何的传统名称,因为实际上这大致上就是我们生活的空间。一般作为平面几何的后续课程。

4、函数。数学术语。其定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。

5、数列。是以正整数集(或它的有限子集)为定义域的一列有序的数。数列中的每一个数都叫做这个数列的项。

6、解析几何。是一种借助于解析式进行图形研究的几何学分支。

学习数学重要性:

1、数学与我们生活息息相关。要说学数学的真正效果,它不是体现在应试教育上,而是将来自身的思维上。

2、数学的重要性不言而喻。数学是一切科学的基础,是培养逻辑思维重要渠道,可以说我们人类的每一次重大进步都有数学这门学科在做强有力的支撑。

3、生活中的数学知识运用无处不在。从日常生活中柴米油盐的费用的计算,到天文地理、质量控制、农业经济、航天事业都存在着运用数学的影子。

数学怎么画立体几何图每次做题目不知道怎么画图,画

楼主问的这个问题太宽泛了,

总的来讲,立体几何中建立坐标系的方法有很多种,即使在一个题目中,也有很多种建立坐标系的方法,但是各个方法表示几何图形中点的坐标的难易是不一样的,所以一个好的坐标系选取的标准就是:想办法建立一个坐标系,在这个坐标系中,图形中点的坐标表示尽可能的简单,这样你的运算或者几何关系才会比较容易的得到。

有了这个标准,就可以视具体问题具体的建立合适的坐标系了,一般是先确定坐标原点,而坐标原点的选取多选择图形的中心或者某个顶点或者某一条边的中点,这样就会让图形中的点容易表示出来。更多的理解要结合具体例子体会,楼主不妨找几个例题做一下。

祝你学习进步!

高中数学立体几何怎么学好

数学怎么画立体几何图每次做题目不知道怎么画图,画

LZ您好...

立体几何题目不都是给你图让你证明或计算了吗?

如果实在遇到题目只给三视图的情况,需要你还原为原始几何体的话

那么您可以在草稿纸上,布列几何体的长宽高(也即三视图特有的长对正,高平齐,宽相等)特征

接着直观图用 标准斜二测画法绘制

关于斜二测可见该链接完全说明斜二测画法

简单来说就是:

请用HB~3H铅笔制图(错了擦掉不会污染卷子或者草稿)

高和长不变,"宽"45度角向右上倾斜,长度变为原来的1/2

在绘制完之后,思考哪些线条是看不见的,请擦成虚线.

将实线(能看见)的部分,用2B或者黑色笔描黑

怎么根据题目画数学的立体几何图形

搞懂了题目的要求,就照那意思去画,立体几何记住透视很重要。

如何画好立体几何图?谢谢!

注意素描的5大调子,你能把高光,投影,明暗交界线表现出来,

那么你的图看上去就有立体感了,

高考数学立体几何画图

看得见画实线看不见画虚线两面相交有交线两线相交有交点点组成线线组成面(画三视图要点)高平齐、长相对、宽相等首先弄懂为什么(高平齐、长相对、宽相等)、为什么有的画实线、有的画虚线,然后多找些实物画三视图

立体几何如何画图

先画水平放置的底面,方法用斜一测画法,规则:

水平线段长度不变,竖直线段缩短为原来的一半;

画好底面后过底面的项点往上画等长的平行线代替侧棱,画好

等长线段后把画好的线段的各个端点连接起来自动形成了一个与下底面全等的图形;

用什么软件画高中立体几何图形

最准确也是最权威的当然是“几何画板”现在更先进的就是“超级画板”了。为数学而开发的软件,能画各种立几图形,还有各种函数图象的。

老师布置作业让我们画80张立体几何图形,怎么画

啊哈,这是老师对你们的一个要求而已。

当然,也包括了自己对于立体几何图形的理解。

点 线 面 体 ,都是立体几何图形。 不要局限于三棱锥,四棱柱等等。

在作业本(纸张)上, 连续厾上80个点,就是80个立体几何图形啦!

(厾,念做:首都的都的音,就是用笔在纸上点一下)。

怎么在知道上画几何图

如果无法用简单的字符实现你的目的,知道中是没法作到的因为知道吧不支持上传,你可以在其它论坛中发帖(包含你的),然后在你知道帖中加入链接到那个帖上,目前这是唯一的方法。

无法画图 数学符号可作为特殊符号,如≠≮≤÷×

若要图的话,可先在自己的机子上画好,再上传到百度空间,提问时附带上图的地址就是了

用Word2003可以画平面及立体几何图吗?

WORD本身就可以画一些简单的平面及三维图形,还可以控制阴影、灯光等效果,但与专业图形处理软件相比,不可同日而语;

平面软件比较著名和成功的有:Photoshop,CorelDRAW,Freehand,Illustrator,Firework等等;

三维软件比较著名和成功的有:

Maya,Unigraphic,3dsMAX,Pro Engeneer,SoftImage,LightWave,Rhino等等。

java怎么绘制立体几何图形

java 输出菱形代码:

System.out.print(" ");

for (k = 1; k <= 2 * i - 1; k++)

System.out.print("*");

System.out.println("");

}

for (i = 1; i <= 4; i++) {

for (j = 1; j <= i; j++)

System.out.print(" ");

for (k = 1; k <= 9 - 2 * i; k++)

System.out.print("*");

System.out.println("");

}

}

}

绘制算法:

1、分为两部分,上半部分和下半部分

2、输出空格部分换个输出*部分

3、最后一个标签需要换行

高考理科数学,立体几何,棱锥与外接球问题

 高中数学立体几何一直是数学的一大难点。因为它要求学生有立体感,在一个平面内把几何图形的立体感想象出来。怎样才能学好立体几何呢?下面我为你整理了高中数学立体几何学习方法,希望对你有帮助。

高中数学立体几何学习方法

 第一要建立空间观念,提高空间想象力。

 从认识平面图形到认识立体图形是一次飞跃,要有一个过程。有的同学自制一些空间几何模型并反复观察,这有益于建立空间观念,是个好办法。有的同学有空就对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。此外,多用图表示概念和定理,多在头脑中?证明?定理和构造定理的?图?,对于建立空间观念也是很有帮助的。

 2. 2

 第二要掌握基础知识和基本技能。

 要用图形、文字、符号三种形式表达概念、定理、公式,要及时不断地复习前面学过的内容。这是因为《立体几何》内容前后联系紧密,前面内容是后面内容的根据,后面内容既巩固了前面的内容,又发展和推广了前面内容。在解题中,要书写规范,如用平行四边形ABCD表示平面时,可以写成平面AC,但不可以把平面两字省略掉;要写出解题根据,不论对于计算题还是证明题都应该如此,不能想当然或全凭直观;对于文字证明题,要写已知和求证,要画图;用定理时,必须把题目满足定理的条件逐一交待清楚,自己心中有数而不把它写出来是不行的。要学会用图(画图、分解图、变换图)帮助解决问题;要掌握求各种角、距离的基本方法和推理证明的基本方法?分析法、综合法、反证法。

 3. 3

 第三要不断提高各方面能力。

 通过联系实际、观察模型或类比平面几何的结论来提出命题;对于提出的命题,不要轻易肯定或否定它,要多用几个特例进行检验,最好做到否定举出反面例子,肯定给出证明。欧拉公式的内容是以研究性课题的形式给出的,要从中体验创造数学知识。要不断地将所学的内容结构化、系统化。所谓结构化,是指从整体到局部、从高层到低层来认识、组织所学知识,并领会其中隐含的思想、方法。所谓系统化,是指将同类问题如平行的问题、垂直的问题、角的问题、距离的问题、惟一性的问题集中起来,比较它们的异同,形成对它们的整体认识。牢固地把握一些能统摄全局、组织整体的概念,用这些概念统摄早先偶尔接触过的或是未察觉出明显关系的已知知识间的联系,提高整体观念。

学好立体几何方法

 一、逐渐提高逻辑论证能力

 立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(?推出法?)形式写出。

 二、立足课本,夯实基础

 学习立体几何的一个捷径就是认真学习课本中定理的证明,尤其是一些很关键的定理的证明。定理的内容都很简单,就是线与线,线与面,面与面之间的联系的阐述。但定理的证明在初学的时候一般都很复杂,甚至很抽象。深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。

 三、培养空间想象力

 为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。

 例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。

 其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。

 最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的?立体?图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。

 四、?转化?思想的应用

 我个人觉得,解立体几何的问题,主要是充分运用?转化?这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:

 (1)两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。

 (2)异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。

 (3)面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。

 五、建立数学模型

立体几何入门指南

还有个思路:

取AB的中点E,则SE、CE都与AB垂直,

△SAB内求出,SE=3(√5)/2

△CAB内求出,CE=(√13)/2

cos∠SEC=-1/√65

sin∠SEC=8/√65

S△SEC=(1/2)*SE*CE*sin∠SEC=3

所求体积=(1/3)*S△SEC*AB=√3

高中数学:立体几何如何画交线和截面?急!!!

刚接触立体几何,是不是感觉有点迷茫?别担心,大家都是这么过来的。立体几何其实就是需要我们培养空间构想的意识。这里分享一些我的心得,希望能帮助大家更好地入门。

掌握定理和公理

对书上的定理和公理要了如指掌,能背出来并用自己的话表述。这样可以帮助你更好地理解立体几何的基本概念和原理。

多看例题

多看例题,它们都是经典中的经典。做题时,试着一边读题一边在图上勾画,这样有助于你更好地理解题意。多做题、多练习,相信很快就能入门。

养成看图习惯

看图时要养成看立体图的习惯。这样可以帮助你更好地理解立体几何的空间结构和形态。多看图、多练习,相信你会越来越熟练。

保持好心态

立体几何是数学中相对简单的部分,也是高考中比较容易的题目。保持好心态,你一定可以取得好成绩!加油,祝你学习进步,天天开心!

利用两点确定一条直线,不在同一条直线上的3点确定一个平面。画交线一般找出两个同属于两个平面的点,连接。画截面一般找3个不在同一直线上属于截面上的点连接。

1,利用公理3,两平面有一个公共点,那么这两个平面就有一条公共交线。

2,面面平行性质定理画。

3、P属于平面αP属于平面β那么P就属于α∩β=l(两面交线)。

扩展资料:

学好立体几何的方法及注意事项:

第一要建立空间观念,提高空间想象力。

从认识平面图形到认识立体图形是一次飞跃,要有一个过程。有的同学自制一些空间几何模型并反复观察,这有益于建立空间观念,是个好办法。

有的同学有空就对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。此外,多用图表示概念和定理,多在头脑中“证明”定理和构造定理的“图”,对于建立空间观念也是很有帮助的。

第二要掌握基础知识和基本技能。

要用图形、文字、符号三种形式表达概念、定理、公式,要及时不断地复习前面学过的内容。这是因为《立体几何》内容前后联系紧密,前面内容是后面内容的根据,后面内容既巩固了前面的内容,又发展和推广了前面内容。

在解题中,要书写规范,如用平行四边形ABCD表示平面时,可以写成平面AC,但不可以把平面两字省略掉;要写出解题根据,不论对于计算题还是证明题都应该如此,不能想当然或全凭直观。

对于文字证明题,要写已知和求证,要画图;用定理时,必须把题目满足定理的条件逐一交待清楚,自己心中有数而不把它写出来是不行的。要学会用图(画图、分解图、变换图)帮助解决问题;要掌握求各种角、距离的基本方法和推理证明的基本方法——分析法、综合法、反证法。

第三要不断提高各方面能力。

通过联系实际、观察模型或类比平面几何的结论来提出命题;对于提出的命题,不要轻易肯定或否定它,要多用几个特例进行检验,最好做到否定举出反面例子,肯定给出证明。欧拉公式的内容是以研究性课题的形式给出的,要从中体验创造数学知识。要不断地将所学的内容结构化、系统化。

所谓结构化,是指从整体到局部、从高层到低层来认识、组织所学知识,并领会其中隐含的思想、方法。所谓系统化,是指将同类问题如平行的问题、垂直的问题、角的问题、距离的问题、惟一性的问题集中起来,比较它们的异同,形成对它们的整体认识。

牢固地把握一些能统摄全局、组织整体的概念,用这些概念统摄早先偶尔接触过的或是未察觉出明显关系的已知知识间的联系,提高整体观念。

要注意积累解决问题的策略。如将立体几何问题转化为平面问题,又如将求点到平面距离的问题,或转化为求直线到平面距离的问题,再继而转化为求点到平面距离的问题;或转化为体积的问题。

要不断提高分析问题、解决问题的水平:一方面从已知到未知,另方面从未知到已知,寻求正反两个方面的知识衔接点——一个固有的或确定的数学关系。

要不断提高反省认知水平,积极反思自己的学习活动,从经验上升到自动化,从感性上升到理性,加深对理论的认识水平,提高解决问题的能力和创造性。

注意事项。

一、立足课本,夯实基础。

直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。

例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处:

(1)深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。

(2)培养空间想象力。

(3)得出一些解题方面的启示。

在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。

二、培养空间想象力。

为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。

其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。

空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。

三、逐渐提高逻辑论证能力。

立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。

切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出。

四、“转化”思想的应用。

我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:

1.两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。

2.异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。

3.面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。

4.三垂线定理可以把平面内的两条直线垂直转化为空间的两条直线垂直,而三垂线逆定理可以把空间的两条直线垂直转化为平面内的两条直线垂直。

以上这些都是数学思想中转化思想的应用,通过转化可以使问题得以大大简化。

五、总结规律,规范训练。

立体几何解题过程中,常有明显的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。

对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。不断总结,才能不断高。

还要注重规范训练,高考中反映的这方面的问题十分严重,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。

这就要求我们在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。

对于即将参加高考的同学来说,考试的每一分都是重要的,在“按步给分”的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。

六、典型结论的应用。

在平时的学习过程中,对于证明过的一些典型命题,可以把其作为结论记下来。利用这些结论可以很快地求出一些运算起来很繁琐的题目,尤其是在求解选择或填空题时更为方便。对于一些解答题虽然不能直接应用这些结论,但其也会帮助我们打开解题思路,进而求解出答案。