1.一元二次方程根的分布在什么情况下不考虑对称轴

2.数学建模实际应用题求解!

3.高二文科生要学数学的内容(,全部),导数是文科生要学的吗?

4.高中的三角函数大概有哪些概念?公式?高考考点是什么?

一元二次方程根的分布在什么情况下不考虑对称轴

高考函数应用题-高考函数例题

以一元二次函数为例

首先比较以下概念:

1、ax^2+bx+c——这是一元二次代数多项式

2、f(x)=ax^2+bx+c——这是一元二次函数

3、f(x)=ax^2+bx+c=0,也即f(x)=0——这是一元二次方程

多项式和函数关系:考虑x的变化,则当x每取一个值时,通过ax^2+bx+c这个多项式的运算,可以得到一个对应的值,设为y,那么可以说y是x的函数(y的全体构成了一个集合,这个集合就是函数值的集合,在图形上(x,y)的集合就组成了函数图像).而ax^2+bx+c这个多项式就是把x对应到y的一个对应关系.其中f(x)的含义就是function of x(x的函数)的意思.在中学中一般直接写成y.如y=ax^2+bx+c.表示形式不一样而已.从以上可知,多项式是函数从自变量到应变量的对应关系.(注意:这只对代数函数而言,随着学习的深入,以后还会遇到其他函数,其对应关系可能不是多项式)

函数与方程的关系:因为确定x后,对应的y也就确定了.那么在实际中我们会遇到这样的情况:知道结果,但不知道原因,需要通过结果来找出原因.在数学上对于这样的问题就可以通过求方程的方法得到.也就是y已知,而x未知.写成数学形式就是f(x)=y其中y已知.ax^2+bx+c=y(这个y是确定的)如果y=0时,也就是f(x)=0.或者写成ax^2+bx+c=0.如果y不等于0,可以通过移项,在等式左边减去y得到形式还是ax^2+bx+c=0的等式.解这样的等式后可以得到两个x的值.从以上可以总结:方程的求解正好是函数求值的反过程,方程的解在图像上只是函数图像上的两个点.(x1,0)和(x2,0)

总结:

1、多项式是形式,对应关系;

2、函数是动态变化的图像(随着自变量变化,应变量相应改变);

3、方程是函数的特例,是函数的局部特征.

以上是对概念的大致解释,如果在学习中能够把多项式、函数和方程联系起来,形成系统的概念,那么对于学习函数有莫大的帮助.甚至在以后大学的学习中也会轻松很多.

下面讲一讲需要掌握的函数概念相关的几个概念.

1、定义域(x有意义的范围,也就是所有x可以取到的值)

求定义域有两大类型,一是根据表达式的数学意义来求,二是根据实际应用来求,这主要在应用题中用到.

2、值域(在取遍所有的x情况下,得到的所有的y的值的集合)

求值域的方法很多,至少有不下十种的方法.是高中数学的一个重点和难点,也是高考必考内容.可能提问的人还没有上高中吧?这里就不说了.

其中函数值域和函数极值的求法是一致的.

3、对应关系(即表示形式)

这个在中学数学中考虑到不多,主要是在应用题中,如何列出函数关系.

特别注意:函数表达式不是唯一的.在判断两个函数是否一致的时候,主要考虑定义域和值域是否一致,同一个x是不是对应同一个y即可.

4、函数的一些性质(奇偶性、单调性、对称性、周期性,这也也都是高中内容)

一元二次函数与一元二次方程需要掌握的几个问题

这里就要用到函数和方程的概念了,上面没懂得,通过这里也可以促进理解;上面懂了,这里看起来会更轻松.下面开始:

1、一元二次函数和方程一样可以有多种表示方法

一般式:f(x)=ax^2+bx+c

分解式:f(x)=a(x-x1)(x-x2)

定点式:f(x)=a(x+x')^2+A

当令f(x)=0的时候就是方程了

2、一元二次方程的韦达定理

3、函数图像

要明白图像开口方向,对称轴和顶点公式

4、方程根的分布(要在脑子中有一个函数图像)

一下只考虑非重根情况,重根情况自己想

1)两个正根

方程:x1X20,x1+x20

对应函数图像:对称轴0,af(0)0 (即a乘以函数在x=0时的函数值)

2)两个负根

对应1)自己写

3)一个正根,一个负根

方程:x1x20

函数:af(-b/2a)0

4)在区间[c,d]上只有一个根

方程的条件很难写,需要转化为函数:

f(c)f(d)0

如果有两个根?

判别式0

af(c)0,af(d)0

c对称轴d

这里只做抛砖引玉作用,需要自己画个图像,然后自己来考虑条件.

关于应用的问题:

一般步骤:

1、求函数关系

2、确定定义域

3、求解(求最大值等等)

其中求函数关系一般是考察学生的理解能力和数学概念的运用

包括求最大值以及函数区间的一些特性,区间的特性以及一些未知数的范围,上面已经讲过了.最大值,只需要考虑两种情况:

1)一个区间上的最大值,需要考虑函数最大值和区间端点情况;

2)在不受区间限制的条件下的最大值,就是函数本身的最大值,代公式即可.

数学建模实际应用题求解!

数学建模论文范文--利用数学建模解数学应用题

数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

一、数学应用题的特点

我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:

第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。

第二、数学应用题的求解需要用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。

第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。

第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。

二、数学应用题如何建模

建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:

第一层次:直接建模。

根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:

将题材设条件翻译

成数学表示形式

应用题 审题 题设条件代入数学模型 求解

选定可直接运用的

数学模型

第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。

第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。

第四层次:设建模。要进行分析、加工和作出设,然后才能建立数学模型。如研究十字路口车流量问题,设车流平稳,没有突发等才能建模。

三、建立数学模型应具备的能力

从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。

3.1提高分析、理解、阅读能力。

阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。

3.2强化将文字语言叙述转译成数学符号语言的能力。

将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。

例如:一种产品原来的成本为a元,在今后几年内,使成本平均每一年比上一年降低p%,经过五年后的成本为多少?

将题中给出的文字翻译成符号语言,成本y=a(1-p%)5

3.3增强选择数学模型的能力。

选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:

函数建模类型 实际问题

一次函数 成本、利润、销售收入等

二次函数 优化问题、用料最省问题、造价最低、利润最大等

幂函数、指数函数、对数函数 细胞分裂、生物繁殖等

三角函数 测量、交流量、力学问题等

3.4加强数算能力。

数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。

利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

加强高中数学建模教学培养学生的创新能力

摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。

关键词:创新能力;数学建模;研究性学习。

《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:

(1)学会提出问题和明确探究方向;

(2)体验数学活动的过程;

(3)培养创新精神和应用能力。

其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。

数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。

一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。

教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。

如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?

这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。

这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。

2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。

学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:

现实原型问题

数学模型

数学抽象

简化原则

演算推理

现实原型问题的解

数学模型的解

反映性原则

返回解释

列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。

3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。

高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、购、销售等问题。设计了如下研究性问题。

例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。

时间(年份) 1910 1920 1930 1940 1950 1960 10 1980 1990

人中数(百万) 39 50 63 76 92 106 123 132 145

分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。

通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。

四、培养学生的其他能力,完善数学建模思想。

由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:

(1)理解实际问题的能力;

(2)洞察能力,即关于抓住系统要点的能力;

(3)抽象分析问题的能力;

(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;

(5)运用数学知识的能力;

(6)通过实际加以检验的能力。

只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。

例2:解方程组

x+y+z=1 (1)

x2+y2+z2=1/3 (2)

x3+y3+z3=1/9 (3)

分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。

方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根

t3-t2+1/3t-1/27=0 (4)

函数模型:

由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)

平面解析模型

方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。

总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。

数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

一、数学应用题的特点

我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:

第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。

第二、数学应用题的求解需要用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。

第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。

第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。

二、数学应用题如何建模

建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:

第一层次:直接建模。

根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:

将题材设条件翻译

成数学表示形式

应用题 审题 题设条件代入数学模型 求解

选定可直接运用的

数学模型

第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。

第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。

第四层次:设建模。要进行分析、加工和作出设,然后才能建立数学模型。如研究十字路口车流量问题,设车流平稳,没有突发等才能建模。

三、建立数学模型应具备的能力

从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。

3.1提高分析、理解、阅读能力。

阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。

3.2强化将文字语言叙述转译成数学符号语言的能力。

将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。

例如:一种产品原来的成本为a元,在今后几年内,使成本平均每一年比上一年降低p%,经过五年后的成本为多少?

将题中给出的文字翻译成符号语言,成本y=a(1-p%)5

3.3增强选择数学模型的能力。

选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:

函数建模类型 实际问题

一次函数 成本、利润、销售收入等

二次函数 优化问题、用料最省问题、造价最低、利润最大等

幂函数、指数函数、对数函数 细胞分裂、生物繁殖等

三角函数 测量、交流量、力学问题等

3.4加强数算能力。

数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。

利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

你的串号我已经记下,纳后我会帮你制作

高二文科生要学数学的内容(,全部),导数是文科生要学的吗?

不知道地区不同会不会有什么不同

我是江苏的,学的也是文科

函数和导数→重中之重,高考必考,特别是导数,函数及应用题都要用的

(文科大纲上据说不考复合函数求导,但还是要看看的)

集合和逻辑语言的运用→这种就是要细心了,这种题目丢分会恶心一阵子的

三角函数→一般不会考的很难,但这一部分很烦

算法、流程图→一般一道小题目,不会很难

复数→这个一般是一道小题目就结束了

数列→重难点,我们这里好几次高考最后一道大题目都是数列

基本不等式→重点,贯穿高中数学啊,一定要学好的

统计与概率、推理与证明→这个一般都不会考很难

平面向量→这个好像也是一些小题目,但大题目可能会有涉及

立体几何→重难点,建议你学一下空间向量(文科不要求),这对解立体几何的题目很有用的

解析几何(难点!!!)→

(1)直线与圆:小题目大题目都有可能,里面有些公式概念一定要牢记

(2)圆锥曲线:椭圆、双曲线、抛物线,这一部分相当恶心,基础概念什么的一定要牢记啊,不牢记就完了,这一部分高考说不定会考的很难,而且计算起来是要命的

我们这里考的应该就那么点了~

祝学习进步,考试顺利

望纳~~

高中的三角函数大概有哪些概念?公式?高考考点是什么?

您好这是06年高中的三角函数,公式的高考辅导资料给你参考;

●考点目标定位

1.理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算.

2.掌握任意角的正弦、余弦、正切的定义,并会利用与单位圆有关的三角函数线表示正弦、余弦和正切;了解任意角的余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式.

3.掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力.

能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明(包括引出积化和差、和差化积、半角公式,但不要求记忆).

4.会用正弦线、正切线画出正弦函数、正切函数的图象,并在此基础上由诱导公式画出余弦函数的图象;理解周期函数与最小正周期的意义,并通过它们的图象理解正弦、余弦、正切函数的性质;会用"五点法"画正弦函数、余弦函数和函数y=Asin(ωx+)的简图,理解A、ω、的物理意义.

5.了解反正弦、反余弦、反正切的概念,会用反三角表示角.

●复习方略指南

本部分内容历来为高考命题的热点,其分值约占20%,一般都是三或四个小题,一个大题.小题主要考查三角函数的基本概念、图象、性质及"和、差、倍角"公式的运用.大题则着重考查y=Asin(ωx+)的图象和性质及三角函数式的恒等变形.试题大都来源于课本中的例题、习题的变形,一般为容易题或中档题.因此复习时应"立足于课本,着眼于提高".

本章内容公式多,三角函数作为工具,和其他知识间的联系密切,因此复习中应注意:

1.弄清每个公式成立的条件,公式间的内在联系及公式的变形、逆用等.切不可死记硬背,要在灵、活、巧上下功夫.

2.本章突出显现以数形结合思想与等价转化思想为主导的倾向.在本章复习中,应深刻理解数与形的内在联系,理解众多三角公式的应用及三角函数式的化简、求值、证明等无一不体现等价转化思想.

3.通过图象的变换理解并掌握利用变换研究图象的思想方法,并从中体会"变换美".

4.有关三角函数方面的应用题,大都需要用"角公式"asinx+bcosx=

sin(x+)(其中角所在象限由a、b的符号确定,角的值由tan=确定)将函数化成y=Asin(ωx+)+h的形式,再求其最值或周期等.

4.1 三角函数的概念、同角三角函数的关系、诱导公式

●知识梳理

1.任意角的三角函数

设α是一个任意角,α的终边上任意一点P(x,y)与原点的距离是r(r=>0),

则sinα=,cosα=,tanα=.

上述三个比值不随点P在终边上的位置改变而改变.

2.同角三角函数关系式

sin2α+cos2α=1(平方关系);

=tanα(商数关系);

tanαcotα=1(倒数关系).

3.诱导公式

α+2kπ(k∈Z)、-α、π±α、2π-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.

另外:sin(-α)=cosα,cos(-α)=sinα.

●点击双基

1.已知sin=,cos =-,那么α的终边在

A.第一象限 B.第三或第四象限

C.第三象限 D.第四象限

解析:sinα=2sincos=-<0,

cosα=cos2-sin2=>0,

∴α终边在第四象限.

答案:D

2.设cosα=t,则tan(π-α)等于

A. B.- C.± D.±

解析:tan(π-α)=-tanα=-.

∵cosα=t,又∵sinα=±,

∴tan(π-α)=±.

答案:C

3.α是第二象限角,P(x,)为其终边上一点且cosα=x,则x的值为

A. B.± C.- D.-

解析:∵cosα===x,

∴x=0(舍去)或x=(舍去)或x=-.

答案:C

4.若=,则α的取值范围是_______.

解析:∵==,

∴cosα>0.∴α∈(2kπ-,2kπ+)(k∈Z).

答案:α∈(2kπ-,2kπ+)(k∈Z)

5.化简=_________.

解析:==|sin4-cos4|=sin4-cos4.

答案:sin4-cos4

●典例剖析

例1 (1)若θ是第二象限的角,则的符号是什么?

(2)π<α+β<,-π<α-β<-,求2α-β的范围.

剖析:(1)确定符号,关键是确定每个因式的符号,而要分析每个因式的符号,则关键看角所在象限.

(2)可以把α+β与α-β看成两个变量(整体思想),然后把2α-β用这两个变量表示出来即可.

解:(1)∵2kπ+<θ<2kπ+π(k∈Z),

∴-1<cosθ<0,4kπ+π<2θ<4kπ+2π,-1<sin2θ<0.

∴sin(cosθ)<0,cos(sin2θ)>0.

∴<0.

(2)设x=α+β,y=α-β,2α-β=mx+ny,

则2α-β=mα+mβ+nα-nβ=(m+n)α+(m-n)β.

∴∴m=,n=.

∴2α-β=x+y.

∵π<x<,-π<y<-,

∴<x<,-<y<-.

∴-π<x+y<.

评述:(1)解此题的常见错误是:

π<α+β<π, ①

-π<α-β<-, ②

①+②得0<2α<π, ③

由②得<β-α<π, ④

①+④得<2β<,∴<β<. ⑤

∴-<-β<-. ⑥

③+⑥得-<2α-β<.

(2)本题可用线性规划求解,读者不妨一试.

例2 已知cosα=,且-<α<0,

求的值.

剖析:从cosα=中可推知sinα、cotα的值,再用诱导公式即可求之.

解:∵cosα=,且-<α<0,

∴sinα=-,cotα=-.

∴原式===-cotα=.

评述:三角函数式的化简求值是三角函数中的基本问题,也是常考的问题之一.

例3 已知sinβ=,sin(α+β)=1,求sin(2α+β)的值.

剖析:由已知sin(α+β)=1,则α+β=2kπ+,再将2α+β改造成2(α+β)-β即可求之.

解:∵sin(α+β)=1,∴α+β=2kπ+.

∴sin(2α+β)=sin[2(α+β)-β]=sinβ=.

评述:整体代入是常用的技巧,这里要分析已知和要求的结论之间的角的关系和三角函数名称之间的关系.

●闯关训练

夯实基础

1.角α的终边过点P(-8m,-6cos60°)且cosα=-,则m的值是

A. B.- C.- D.

解析:P(-8m,-3),cosα==-.

∴m=或m=-(舍去).

答案:A

2.设α、β是第二象限的角,且sinα<sinβ,则下列不等式能成立的是

A.cosα<cosβ B.tanα<tanβ

C.cotα>cotβ D.secα<secβ

解析:A与D互斥,B与C等价,则只要判断A与D对错即可.利用单位圆或特殊值法,易知选A.

答案:A

3.已知tan110°=a,则tan50°=_________.

解析:tan50°=tan(110°-60°)==.

答案:

4.(2004年北京东城区二模题)已知sinα+cosα=,那么角α是第_______象限的角.

解析:两边平方得1+2sinαcosα=,

∴sinαcosα=-<0.

∴α是第二或第四象限角.

答案:第二或第四

5.若sinα·cosα<0,sinα·tanα<0,

化简+.

解:由所给条件知α是第二象限角,则是第一或第三象限角.

原式==

=

6.化简(k∈Z).

解:当k=2n(n∈Z)时,

原式=

==-1.

当k=2n+1(n∈Z)时,

原式=

==-1.

综上结论,原式=-1.

培养能力

7.(2005年北京东城区模拟题)已知tan(+α)=2,求:

(1)tanα的值;

(2)sin2α+sin2α+cos2α的值.

(1)解:tan(+α)==2,∴tanα=.

(2)解法一:sin2α+sin2α+cos2α=sin2α+sin2α+cos2α-sin2α

=2sinαcosα+cos2α

==

==.

解法二:sin2α+sin2α+cos2α=sin2α+sin2α+cos2α-sin2α

=2sinαcosα+cos2α. ①

∵tanα=,

∴α为第一象限或第三象限角.

当α为第一象限角时,sinα=,cosα=,代入①得

2sinαcosα+cos2α=;

当α为第三象限角时,sinα=-,cosα=-,代入①得

2sinαcosα+cos2α=.

综上所述sin2α+sin2α+cos2α=.

8.已知sinθ=,cosθ=,若θ是第二象限角,求实数a的值.

解:依题意得

解得a=或a=1(舍去).

故实数a=.

9.设α∈(0,),试证明:sinα<α<tanα.

证明:如下图,在平面直角坐标系中作单位圆,设角α以x轴正半轴为始边,终边与单位圆交于P点.

∵S△OPA<S扇形OPA<S△OAT,

∴|MP|<α<|AT|.

∴sinα<α<tanα.

探究创新

10.是否存在α、β,α∈(-,),β∈(0,π)使等式sin(3π-α)=cos(-β),cos(-α)=-cos(π+β)同时成立?若存在,求出α、β的值;若不存在,请说明理由.

解:由条件得

①2+②2得sin2α+3cos2α=2,∴cos2α=.

∵α∈(-,),

∴α=或α=-.

将α=代入②得cosβ=.又β∈(0,π),

∴β=,代入①可知,符合.

将α=-代入②得β=,代入①可知,不符合.

综上可知α=,β=.

●思悟小结

1.要熟悉任意角的概念、弧度制与角度制的互化、弧度制下的有关公式、任意角的三角函数概念.

2.在已知一个角的三角函数值,求这个角的其他三角函数值时,要注意题设中角的范围,并就不同的象限分别求出相应的值.

3.注意公式的变形使用,弦切互化、三角代换、消元是三角变换的重要方法,要尽量减少开方运算,慎重确定符号.

4.注意"1"的灵活代换,如1=sin2α+cos2α=sec2α-tan2α=csc2α-cot2α=tanα·cotα.

5.应用诱导公式,重点是"函数名称"与"正负号"的正确判断,一般常用"奇变偶不变,符号看象限"的口诀.

●教师下载中心

教学点睛

1.本课时概念多且杂,要求学生在预习的基础上,先准确叙述回忆,复习中注意"三基"的落实.

2.利用同角三角函数的关系及诱导公式进行化简、求值、证明时,要细心观察题目的特征,注意培养学生观察、分析问题的能力,并注意做题后的总结,引导学生总结一般规律.如:"切割化弦""1的巧代",sinα+cosα、sinαcosα、sinα-cosα这三个式子间的关系.

拓展题例

例1 求sin21°+sin22°+...+sin290°.

分析:sin21°+cos21°=sin21°+sin289°=1.

故可倒序相加求和.

解:设S=sin20°+sin21°+sin22°+...+sin290°,S=sin290°+sin289°+sin288°+...+sin20°,∴2S=(sin20°+sin290°)+...+(sin290°+sin20°)=1×91.∴S=45.5.

例2 已知sinα+cosβ=1,求y=sin2α+cosβ的取值范围.

分析:本题易错解为y=sin2α+1-sinα,sinα∈[-1,1],然后求y的取值范围.

解:y=sin2α-sinα+1=(sinα-)2+.

∵sinα+cosβ=1,∴cosβ=1-sinα.

∴sinα∈[0,1].

∴y∈[,1].