高考圆锥曲线公式_高考圆锥曲线方程
1.高中数学圆锥曲线。
2.圆锥曲线切线方程公式
3.高中数学 圆锥曲线的参数方程
4.高中数学圆锥曲线问题
5.高中数学圆锥曲线公式总结
6.圆锥曲线的几何性质
设圆锥曲线方程为x^2/a^2+y^2/b^2=1,
这里a,b都是正数,不限制谁大,谁小。
也就是说焦点在哪个轴上不知道。
因为(cosφ)^2+(sinφ)^2=1,
为了把x^2/a^2=(cosφ)^2
y^2/b^2=(sinφ)^2
一定是x与cosφ对着,y与sinφ对着
两边开方得x=acosφ
y=bsina(φ为参数)
这就是参数方程的来历。
高中数学圆锥曲线。
有统一方程。
圆锥曲线的统一方程根据圆锥曲线第二定义,到定点到定直线距离成比例 设定直线为 ax+by+c=0,定点为(m,n)。
圆锥曲线,是由一平面截二次锥面得到的曲线。圆锥曲线包括椭圆(圆为椭圆的特例)、抛物线、双曲线。起源于2000多年前的古希腊数学家最先开始研究圆锥曲线。
圆锥曲线(二次曲线)的(不完整)统一定义:到平面内一定点的距离r与到定直线的距离d之比是常数e=r/d的点的轨迹叫做圆锥曲线。其中当e>1时为双曲线,当e=1时为抛物线,当0<e<1时为椭圆。
定点叫做该圆锥曲线的焦点,定直线叫做(该焦点相应的)准线,e叫做离心率。
圆锥曲线切线方程公式
从现实来讲,用平面从不同角度横截圆锥,可以得到三类曲线:椭圆、双曲线、抛物线,自己想想该怎么截。。。
解析集合的角度,圆锥曲线统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
如果你会用集合画板或者别的软件作图,按照这个定义分别画个图就会得到你想要的曲线。
高中数学 圆锥曲线的参数方程
圆锥曲线切线方程公式:x^2/a^2+y^2/b^2=1。曲线,是微分几何学研究的主要对象之一。直观上,曲线可看成空间质点运动的轨迹。微分几何就是利用微积分来研究几何的学科。为了能够应用微积分的知识,我们不能考虑一切曲线,甚至不能考虑连续曲线,因为连续不一定可微。这就要我们考虑可微曲线。
立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。垂直于轴的边旋转而成的曲面叫做圆锥的底面。
高中数学圆锥曲线问题
C1:(x/a)^2-(y/b)^2=1
C2:(y/b)^2-(x/a)^2=1
e1=根号下(1+b^2/a^2)
e2=根号下(1+a^2/b^2)
e1+e2=t
t^2=2+a^2/b^2+b^2/a^2+
2t
t^2-2t-(b^2/a^2+a^2/b^2+2)=0
然后就求根吧
可以设b^2/a^2+a^2/b^2=v(大于等于2)
△=4+
4v
+8=12+4v
tmin=(2+根号下(12+4v))/2((2-根号下(12+4v))/2)舍去)
所以当v取2时为最小值
即tmin=3
高中数学圆锥曲线公式总结
设OA方程为 y=kx(k≠0) ,与抛物线方程联立,解得 A(k,k^2),
将k换为 -1/k,得 B(-1/k,1/k^2),
所以 AB斜率=(k^2-1/k^2)/(k+1/k)=k-1/k,
设P(x,y),则 由OP丄AB得 -x/y=k-1/k。 (1)
又由于P、A、B共线,y=(k-1/k)(x-k)+k^2 (2)
由(1)(2)消去k,得 x^2+y^2-y=0,
即 x^2+(y-1/2)^2=1/4。(y≠0)
它是去掉原点的圆,圆心(0,1/2),半径 r=1/2。
圆锥曲线的几何性质
高中数学圆锥曲线公式总结
1.焦半径公式 ,P为椭圆上任意一点,则│PF1│= a + eXo
│PF2│= a - eXo
(F1 F2分别为其左,右焦点)
2.通径长 = 2b2/a
3.焦点三角形面积公式
S_PF1F2 = b2tan(θ/2) (θ为∠F1PF2)
(这个可能有点难理解,不过结合第一定义可以较快的推,双曲线的也是同样方法)
4.(左)准点Q (自己取的名字方便叙述,准线与X轴的焦点)
过左焦点F1的任意一条线与椭圆交与A ,B 那么一定有:X轴平分∠AQB
(在右边也是一样)
圆锥曲线公式二.双曲线
1.通径就不说了 2.焦半径公式(有8个,很难打符号的,不过可以根据极坐标方程来直接解答,比焦半径公式还快一些)
3.焦点三角形面积公式
S_PF1F2 =b2cot(θ/2) (左右支都是它)
圆锥曲线公式三.抛物线
y2=2px (p>0)过焦点的直线交它于A(X1,Y1),B(X2,Y2)两点
1.│AB│=X1 + X2 + p =2p/sin2θ (θ为直线AB的倾斜角)
2. Y1*Y2 = -p2 , X1*X2 = p2/4
3.1/│FA│ + 1/│FB│ = 2/p
4.结论:以AB 为直径的圆与抛物线的准线线切
5.焦半径公式:│FA│= X1 + p/2 = p/(1-cosθ)
圆锥曲线公式四. 通性
直线与圆锥曲线 y= F(x) 相交于A ,B,则
│AB│=√(1+k2) * [√Δ/│a│]
圆锥曲线包括椭圆(圆为椭圆的特例),抛物线,双曲线。
圆锥曲线(二次曲线)的统一定义:到定点(焦点)的距离与到定直线(准线)的距离的商是常数e(离心率)的点的轨迹。当e>1时,为双曲线的一支,当e=1时,为抛物线,当0
问题一:圆锥曲线到大学才知道的几何性质有那些? 列上一些 带证明更谢谢了 现在高中出题基本上都是大学 高考源于教材,必须略高于教材。
本人结合历年高考编著一本《高考常考的大一数学》有关圆锥曲线的有四线一方程。
1、 若P(x0,y0)在椭圆x2/a2+y2/b2=1上,得到切线方程为
x0x/a2+y0y/b2=1;
若P(x0,y0)在椭圆x2/a2+y2/b2=1外,得到切点弦方程为
x0x/a2+y0y/b2=1;
这两个方程形式一样,含义不一样。PPPPPP2
2、 若P(x0,y0)在双曲线x2/a2-y2/b2=1上,得到切线方程为
x0x/a2-y0y/b2=1;
若P(x0,y0)在椭圆x2/a2-y2/b2=1外,得到切点弦方程为
x0x/a2-y0y/b2=1;
3、 若P(x0,y0)在抛物线y2=2px上,得到切线方程为
y0y=p(x0+x);
若P(x0,y0)在抛物线y2=2px外,得到切点弦方程为
y0y=p(x0+x);
与庆杰高歌同行数学加强班为你提供!《高考常考的大一数学》一本15元,若要,短信联系13608614549
问题二:圆锥曲线的解题技巧? 1.圆锥曲线的两个定义:
(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F ,F 的距离的和等于常数 ,且此常数 一定要大于 ,当常数等于 时,轨迹是线段F F ,当常数小于 时,无轨迹;双曲线中,与两定点F ,F 的距离的差的绝对值等于常数 ,且此常数 一定要小于|F F |,定义中的“绝对值”与 <|F F |不可忽视。若 =|F F |,则轨迹是以F ,F 为端点的两条射线,若 |F F |,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如方程 表示的曲线是_____(答:双曲线的左支)
(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
如已知点 及抛物线 上一动点P(x,y),则y+|PQ|的最小值是_____(答2)
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):
(1)椭圆:焦点在 轴上时 ( ),焦点在 轴上时 =1( )。方程 表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。
如(1)已知方程 表示椭圆,则 的取值范围为____(答: );
(2)若 ,且 ,则 的最大值是____, 的最小值是___(答: )
(2)双曲线:焦点在 轴上: =1,焦点在 轴上: =1( )。方程 表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。
如设中心在坐标原点 ,焦点 、 在坐标轴上,离心率 的双曲线C过点 ,则C的方程为_______(答: )
(3)抛物线:开口向右时 ,开口向左时 ,开口向上时 ,开口向下时 。
如定长为3的线段AB的两个端点在y=x2上移动,AB中点为M,求点M到x轴的最短距离。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):
(1)椭圆:由 , 分母的大小决定,焦点在分母大的坐标轴上。
如已知方程 表示焦点在y轴上的椭圆,则m的取值范围是__(答: )
(2)双曲线:由 , 项系数的正负决定,焦点在系数为正的坐标轴上;
(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F ,F 的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数 ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中, 最大, ,在双曲线中, 最大, 。
4.圆锥曲线的几何性质:
(1)椭圆(以 ( )为例):①范围: ;②焦点:两个焦点 ;③对称性:两条对称轴 ,一个对称中心(0,0),四个顶点 ,其中长轴长为2 ,短轴长为2 ;④准线:两条准线 ; ⑤离心率: ,椭圆 , 越小,椭圆越圆; 越大,椭圆越扁。
如(1)若椭圆 的离心率 ,则 的值是__(答:3或 );
(2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__(答: )
(2)双曲线(以 ( )为例):①范围: 或 ;②焦点:两个焦点 ;③对称性:两条对称轴 ,一个对称中心(0,0),两个顶点 ,其中实轴长为2 ,虚轴长为2 ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 ;④准线:两条准线 ; ⑤离心率: ,双曲线 ,等轴双曲线 , 越......>>
问题三:圆锥曲线六大名圆分别是什么,有什么性质? 圆锥曲线统一定义:(第二定义)
平面上到定点(焦点)的距离与到定直线(准线)的距离为定值(离心率e)的点的 *** .而根据e的大小分为椭圆,抛物线,双曲线.圆可看作e为0的曲线.
1.0x^2/a^2+y^2/b^2=1(0y^2/a^2+y^2/b^2=1(0a^2=b^2+c^2
椭圆上任意一点到两焦点距离之和为2a(定值),且大于焦距2c,这是第一定义
问题四:谁能告诉我现在什么游戏正在公测? 去17173
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。