数学高考函数题,数学高考函数
1.高三数学函数零点的判定定理知识点
2.高考必备数学公式
3.高三数学函数问题
4.高中数学函数例题以及解析?
5.高考数学函数应该怎么学,要具体方法。
6.高三文科数学函数专题
7.高考函数的热点有哪些?
高考数学必考公式如下:
1、抛物线:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。a>0时,抛物线开口向上;a<0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。
2、顶点式y=a(x+h)*+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。
3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。
4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2pxx^2=2pyx^2=-2py。
5、函数的奇偶性:对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数;对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
6、函数的奇偶性:对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数;对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
如何使用数学公式模板:
1、可以打印下来,时常复习。直到记住这些公式。也可以不用打印,直接把保存或者收藏。然后时常翻看即可。还可以直接手抄一边。在抄写的过程中,基本上就能够记住这些数学公式。
2、多次记忆。不要指望一次就能够把这些数学公式给记住。只有经过两遍到三遍的记忆,才能够顺利记住以下公式。
3、记忆公式的过程中,学会先浏览再记忆。也就是说,要先学会理解这些公式的含义。理解了具体的含义以后,再来记忆,相对来说,记忆的难度就会小很多。
4、在平时做题的时候,可以对照一下这些公式的具体步骤和类型。看看有没有能够对应得上的题型。以便验证自己的学习效果。
高三数学函数零点的判定定理知识点
二分法所属现代词,指的是数学领域的概念,在高中数学课程中会有学到,下面是我给大家带来的高考数学用二分法求函数零点的近似值知识点,希望对你有帮助。
高考数学用二分法求函数零点的近似值知识点
二分法的定义:
对于区间[a,b]上连续不断,且f(a)?f(b)<0的函数y=f(x),通过不断把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似解的方法叫做二分法。
给定精确度?,用二分法求函数f(x)的零点的近似值的步骤:
(1)确定区间[a,b],验证f(a)?f(b)<0,给定精确度?;
(2)求区间(a,b)的中点x1;
(3)计算f(x1),
①若f(x1)=0,则就是函数的零点;
②若f(a)?f(x1)<0,则令b=x1(此时零点x0?(a,x1));
③若f(x1)?f(b)<0,则令a=x1(此时零点x0?(x1,b));
(4)判断是否达到精确度?,即若|a-b|<?,则达到零点近似值a(或b);否则重复(2)-(4)。
利用二分法求方程的近似解的特点:
(1)二分法的优点是思考方法非常简明,缺点是为了提高解的精确度,求解的过程比较长,有些计算不用计算工具甚至无法实施,往往需要借助于科学计算器.
(2)二分法是求实根的近似计算中行之有效的最简单的方法,它只要求函数是连续的,因此它的使用范围很广,并便于在计算机上实现,但是它不能求重根,也不能求虚根。
关于用二分法求函数零点近似值的步骤应注意以下几点:
①第一步中要使区间长度尽量小,f(a),f(b)的值比较容易计算,且f(a).f(b)<0;
②根据函数的零点与相应方程根的关系,求函数的零点与求相应方程的根是等价的,对于求方程f(x)=g(x)的根,可以构造函数F(x)=f(x)-g(x),函数F(x)的零点即为方程f(x)=g(x)的根;
③设函数的零点为x0,则a<x0<b,作出数轴,在数轴上标出a,b,x0对应的点,如图,所以0<x0-a<b-a,a一b<x0-b<0.由于|a -b|<?,所以|x0 -a|<b-a<?,|x0 -b|<|a -b|<?即a或b作为函数的零点x0的近似值都达到给定的精确度?
④我们可用二分法求方程的近似解.由于计算量大,而且是重复相同的步骤,因此,我们可以通过设计一定的计算程序,借助计算器或计算机完成计算.
数学用二分法求函数零点的近似值练习
用二分法求方程的近似解
在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障.这是一条10 km长的线路,如何才能迅速查出故障所在?如果沿着线路一小段一小段查找,困难很多,每查一个点要爬一次电线杆,10 km长的线路,大约有200根电线杆,想一想,维修线路的工人师傅怎样工作才合理?
基础巩固
1.方程|x2-3|=a的实数解的个数为m,则m不可能等于( )
A.1 B.2 C.3 D.4
解析:由图可知y=|x2-3|与y=a不可能是一个交点.
答案:A
2.对于函数f(x)=x2+mx+n,若f(a)>0,f(b)>0(a<b),则在(a,b)内f(x)( )
A.一定有零点 B.一定没有零点
C.可能有两个零点 D.至多有一个零点
解析:画y=f(x)的大致图象分析,也可取m,n,a,b的特殊值,很容易判断f(x)在(a,b)内可能有两个零点.
答案:C
3.已知函数f(x)在区间(0,a)上有唯一的零点(a>0),在用二分法寻找零点的过程中,依次确定了零点所在的区间为0,a2,0,a4,0,a8,则下列说法中正确的是( )
A.函数f(x)在区间0,a16无零点
B.函数f(x)在区间0,a16或a16,a8内有零点
C.函数f(x)在a16,a内无零点
D.函数f(x)在区间0,a16或a16,a8内有零点,或零点是a16
解析:由二分法求函数零点的原理可知选D.
答案:D
4.奇函数f(x)=x3+bx2+cx的三个零点是x1,x2,x3,满足x1x2+x2x3+x3x1=-2,则b+c=________.
解析:∵f(x)为奇函数,?b=0,故f(x)=x3+cx有一个零点是0,不妨设x1=0,则x2,x3是x2+c=0的二根,故x2x3=c,由x1x2+x2x3+x3x1=-2得c=-2,故b+c=0-2=-2.
答案:-2
5.已知函数f(x)的图象是连续不断的,有如下的x,f(x)对应值:
x123456
f(x)1210-24-5-10
函数f(x)在区间[1,6]上的零点至少有__________个.
高考必备数学公式
函数零点问题是高等数学中的重要问题,高中数学课程中有基本的介绍,下面是我给大家带来的高三数学函数零点的判定定理知识点,希望对你有帮助。
高三数学函数零点的判定定理知识点(一)
函数零点存在性定理:
一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)。f(b)<o,那么函数y=f(x)在区间(a,b)内有零点,即存在c?(a,b),使得f(c)=O,这个c也就是f(x)=0的根。特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一。
(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x) =x2-3x +2有f(0)?f(3)>0,但函数f(x)在区间(0,3)上有两个零点。
(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a)。f(b)<0,则fx)在(a,b)上有唯一的零点。
函数零点个数的判断方法:
(1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点。
特别提醒:①?方程的根?与?函数的零点?尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点
②函数的零点是实数而不是数轴上的点。
(2)代数法:求方程f(x)=0的实数根。
高三数学函数零点的判定定理知识点(二)
判断函数零点个数的常用方法
(1)解方程法:令f(x)=0,如果能求出解,则有几个解就有几个零点。
(2)零点存在性定理法:利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)?f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。
(3)数形结合法:转化为两个函数的图象的交点个数问题。先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。
高三数学函数问题
高考必备数学公式:
1、三角函数:sin(a+b)=sin(a)cos(b)+cos(a)sin(b)、cos(a+b)=cos(a)cos(b)-sin(a)sin(b)、tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))、sin^2(a)+cos^2(a)=1、1+tan^2(a)=sec^2(a)、1+cot^2(a)=csc^2(a)
2、平面几何:勾股定理:a^2+b^2=c^2、圆的面积:S=πr^2、圆的周长:C=2πr、正方形的面积:S=a^2、矩形的面积:S=长×宽、平行四边形的面积:S=底边×高、梯形的面积:S=1/2×(上底+下底)×高、三角形的面积:S=1/2×底边×高或者海龙公式:S=sqrt[p(p-a)(p-b)(p-c)],其中,p=(a+b+c)/2
3、解析几何:两点间距离公式:d=sqrt[(x2-x1)^2+(y2-y1)^2]、点到直线距离公式:d=|Ax+By+C|/sqrt(A^2+B^2),其中 | | 表示绝对值、平面曲线极坐标方程:(x,y)=(rcosθ,rsinθ)
4、概率论:乘法公式:P(A∩B)=P(A)×P(B|A)、加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)、全概率公式:P(B)=∑P(Ai)×P(B|Ai),其中,Ai是样本空间的划分、贝叶斯公式:P(B|A)=P(A|B)×P(B)/P(A),其中,P(B)是先验概率,P(A)和P(A|B)是后验概率
数学高考做题技巧
1、认真审题:在考试中,一定要认真审题,对于不懂的词汇或概念,可结合前后文理解或求助老师。在做题之前,一定要理解题目的意思,抓住重点,并阅读题目中的条件和要求,以此正确解题。
2、要分类讨论:在解题过程中,如遇到问题不是一步就能解答的,可以通过分类讨论的方式,对原题进行分拆,例如把问题一分为二,进行逐步推导,这样可以减少答错的概率。
3、掌握公式和技巧:高考数学考试中需要运用很多公式和技巧,在平时复习时一定要把它们掌握,例如完成三角函数类的题目,首先需要掌握三角函数的定义和性质,以此来实现正确解答。
4、要多练习:做高考数学题的技巧是积累的,因此,认真完成老师布置的作业,多做模拟题和历年真题,可以增强做题的信心和耐力,锻炼做题的速度和准确性。
5、勇于放弃:在考试过程中,有些题目难度过大或因为个人知识储备不足而无法解答,这时就要及时放弃,不要浪费时间影响后续的答题,要合理安排时间,优先解答易解和得分高的题目。
高中数学函数例题以及解析?
解:∵对任意x∈R,都满足f(x+1)=f(x-1)
∴f(x)=f(x+2)即f(x)是以2为最小正周期的周期函数,周期可表示为2K,K∈Z
∵f(1-x)=f(1+x)∴f(x)关于X=1对称
又当x∈[0,1]时,f(x)=x?-2x
∵f(x)=x?-2x关于X=1对称
∴x∈[1,2]时,f(x)=x?-2x,即是说当在函数的一个周期区间[0,2]上有
f(x)=x?-2x=(x-1)?-1
∴可以通过平移f(x)=x?-2x在x∈[0,2]的图像得到其他周期区间上的图像
向左平移2个单位得到在[-2,0]上的图像,其函数表达式为f(x)=(x-1+2)?-1=(x+1)?-1
从函数图像上易得到f(x)在[-1,1]上关于Y轴对称,∴f(x)在[-1,1]上是偶函数
最大值是0,最小值是-1,在[-1,0]上单调递增,在[0,1]上单调递减
当X=0时,f(x)=0,∴零点是X=0
高考数学函数应该怎么学,要具体方法。
一、基本概念:
1、 数列的定义及表示方法:
2、 数列的项与项数:
3、 有穷数列与无穷数列:
4、 递增(减)、摆动、循环数列:
5、 数列{an}的通项公式an:
6、 数列的前n项和公式Sn:
7、 等差数列、公差d、等差数列的结构:
8、 等比数列、公比q、等比数列的结构:
二、基本公式:
9、一般数列的通项an与前n项和Sn的关系:an=
10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:Sn= Sn= Sn=
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k
(其中a1为首项、ak为已知的第k项,an≠0)
13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q≠1时,Sn= Sn=
三、有关等差、等比数列的结论
14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。
15、等差数列{an}中,若m+n=p+q,则
16、等比数列{an}中,若m+n=p+q,则
17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
19、两个等比数列{an}与{bn}的积、商、倒数组成的数列
{an bn}、 、 仍为等比数列。
20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)
24、{an}为等差数列,则 (c>0)是等比数列。
25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列。
26. 在等差数列 中:
(1)若项数为 ,则
(2)若数为 则, ,
27. 在等比数列 中:
(1) 若项数为 ,则
(2)若数为 则,
四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。
28、分组法求数列的和:如an=2n+3n
29、错位相减法求和:如an=(2n-1)2n
30、裂项法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、求数列{an}的最大、最小项的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函数f(n)的增减性 如an=
33、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得 取最大值.
(2)当 <0,d>0时,满足 的项数m使得 取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
六、平面向量
1.基本概念:
向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
2. 加法与减法的代数运算:
(1) .
(2)若a=( ),b=( )则a b=( ).
向量加法与减法的几何表示:平行四边形法则、三角形法则。
以向量 = 、 = 为邻边作平行四边形ABCD,则两条对角线的向量 = + , = - , = -
且有| |-| |≤| |≤| |+| |.
向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律);
+0= +(- )=0.
3.实数与向量的积:实数 与向量 的积是一个向量。
(1)| |=| |·| |;
(2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0.
(3)若 =( ),则 · =( ).
两个向量共线的充要条件:
(1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= .
(2) 若 =( ),b=( )则 ‖b .
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2.
4.P分有向线段 所成的比:
设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比。
当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0;
分点坐标公式:若 = ; 的坐标分别为( ),( ),( );则 ( ≠-1), 中点坐标公式: .
5. 向量的数量积:
(1).向量的夹角:
已知两个非零向量 与b,作 = , =b,则∠AOB= ( )叫做向量 与b的夹角。
(2).两个向量的数量积:
已知两个非零向量 与b,它们的夹角为 ,则 ·b=| |·|b|cos .
其中|b|cos 称为向量b在 方向上的投影.
(3).向量的数量积的性质:
若 =( ),b=( )则e· = ·e=| |cos (e为单位向量);
⊥b ·b=0 ( ,b为非零向量);| |= ;
cos = = .
(4) .向量的数量积的运算律:
·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c.
6.主要思想与方法:
本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。
七、立体几何
1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
能够用斜二测法作图。
2.空间两条直线的位置关系:平行、相交、异面的概念;
会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。
3.直线与平面
①位置关系:平行、直线在平面内、直线与平面相交。
②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。
③直线与平面垂直的证明方法有哪些?
④直线与平面所成的角:关键是找它在平面内的射影,范围是{00.900}
⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线.
4.平面与平面
(1)位置关系:平行、相交,(垂直是相交的一种特殊情况)
(2)掌握平面与平面平行的证明方法和性质。
(3)掌握平面与平面垂直的证明方法和性质定理。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。
(4)两平面间的距离问题→点到面的距离问题→
(5)二面角。二面角的平面交的作法及求法:
①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;
②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。
③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法?
回
高三文科数学函数专题
函数是高考重点中的重点,也就是高考的命题当中确实含有以函数为纲的思想,怎样学好函数主要掌握以下几点。第一,要知道高考考查的六个重点函数,一,指数函数;二,对数函数;三,三角函数;四,二次函数;五,最减分次函数;六,双勾函数Y=X+A/X(A>0)。要掌握函数的性质和图象,利用这些函数的性质和图象来解题。另外,要总结函数的解题方法,函数的解题方法主要有三种,第一种方法是基本函数法,就是利用基本函数的性质和图象来解题;第二种方法是构造辅助函数;第三种方法是函数建模法。要特别突出函数与方程的思想,数形结合思想。
数形结合,从函数图象中找出关键.
函数其实在初中的时候就已经讲过了,当然那时候是最简单的一次和二次,而整个高中函数最富有戏剧性的函数实际上也就是二次函数,学好函数总的策略是掌握每一种函数的性质,这样就可以运用自如,有备无患了。函数的性质一般有单调性、奇偶性、有界性及周期性。能够完美体现上述性质的函数在中学阶段只有三角函数中的正弦函数和余弦函数。以上是函数的基本性质,通过奇偶性可以衍生出对称性,这样就和二次函数联系起来了,事实上,二次函数可以和以上所有性质联系起来,任何函数都可以,因为这些性质就是在大量的基本函数中抽象出来为了更加形象地描述它们的。我相信这点你定是深有体会。剩下的幂函数、指数函数对数函数等等本身并不复杂,只要抓住起性质,例如对数函数的定义域,指数函数的值域等等,出题人可以大做文章,答题人可以纵横捭阖畅游其中。性质是函数最本质的东西,世界的本质就是简单,复杂只是起外在的表现形式,函数能够很好到体现这点。另外,高三还要学导数,学好了可以帮助理解以前的东西,学不好还会扰乱人的思路,所以,我建议你去预习,因为预习绝对不会使你落后,我最核心的学习经验就是预习,这种方法使我的数学远远领先其它同学而立于不败之地。
综上,在学习函数的过程中,你要抓住其性质,而反馈到学习方法上你就应该预习(有能力的话最好能够自学)。
高考函数的热点有哪些?
函数与基本初等函数
函数的概念
(1)函数的概念
①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作.
②函数的三要素:定义域、值域和对应法则.
③只有定义域相同,且对应法则也相同的两个函数才是同一函数.
(2)区间的概念及表示法
①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做.
注意:对于集合与区间,前者可以大于或等于,而后者必须.
(3)求函数的定义域时,一般遵循以下原则:
①是整式时,定义域是全体实数.
②是分式函数时,定义域是使分母不为零的一切实数.
③是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.
⑤中,.
⑥零(负)指数幂的底数不能为零.
⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.
⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.
⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.
(4)求函数的值域或最值
求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:
①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.
③判别式法:若函数可以化成一个系数含有的关于的二次方程,则在时,由于为实数,故必须有,从而确定函数的值域或最值.
④不等式法:利用基本不等式确定函数的值域或最值.
⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.
⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.
⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.
⑧函数的单调性法.
函数的表示法
(5)函数的表示方法
表示函数的方法,常用的有解析法、列表法、图象法三种.
解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.
(6)映射的概念
①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作.
②给定一个集合到集合的映射,且.如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象.
函数的基本性质
一、单调性与最大(小)值
(1)函数的单调性
①定义及判定方法
函数的
性质
定义
图象
判定方法
函数的
单调性
如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.
(1)利用定义
(2)利用已知函数的单调性
(3)利用函数图象(在某个区间图
象上升为增)
(4)利用复合函数
如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.
(1)利用定义
(2)利用已知函数的单调性
(3)利用函数图象(在某个区间图
象下降为减)
(4)利用复合函数
②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.
③对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减.
(2)打“√”函数的图象与性质
分别在、上为增函数,分别在、上为减函数.
(3)最大(小)值定义
①一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得.那么,我们称是函数的最大值,记作.
②一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得.那么,我们称是函数的最小值,记作.
二、奇偶性
(4)函数的奇偶性
①定义及判定方法
函数的
性质
定义
图象
判定方法
函数的
奇偶性
如果对于函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)叫做奇函数.
(1)利用定义(要先判断定义域是否关于原点对称)
(2)利用图象(图象关于原点对称)
如果对于函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)叫做偶函数.
(1)利用定义(要先判断定义域是否关于原点对称)
(2)利用图象(图象关于y轴对称)
②若函数为奇函数,且在处有定义,则.
③奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反.
④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.
〖补充知识〗函数的图象
(1)作图
利用描点法作图:
①确定函数的定义域; ②化解函数解析式;
③讨论函数的性质(奇偶性、单调性); ④画出函数的图象.
利用基本函数图象的变换作图:
要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.
①平移变换
②伸缩变换
③对称变换
(2)识图
对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.
(3)用图
函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.
求值域的几种常用方法
(1)配方法:对于(可化为)“二次函数型”的函数常用配方法,如求函数,可变为解决
(2)基本函数法:一些由基本函数复合而成的函数可以利用基本函数的值域来求,如函数就是利用函数和的值域来求。
(3)判别式法:通过对二次方程的实根的判别求值域。如求函数的值域
由得,若,则得,所以是函数值域中的一个值;若,则由得,故所求值域是
(4)分离常数法:常用来求“分式型”函数的值域。如求函数的值域,因为
,而,所以,故
(5)利用基本不等式求值域:如求函数的值域
当时,;当时,,若,则
若,则,从而得所求值域是
(6)利用函数的单调性求求值域:如求函数的值域
因,故函数在上递减、在上递增、在上递减、在上递增,从而可得所求值域为
(7)图象法:如果函数的图象比较容易作出,则可根据图象直观地得出函数的值域(求某些分段函数的值域常用此法)。
函数与映射的概念
原创/O客
从近五年高考数学试题全国和各省市卷看,高考函数热点问题集中在四个关键词:导数应用、与不等式综合、三角函数应用 、函数模型应用.
●导数应用. 频繁出现的考点有:求切线;零点与导数,利用导数求极值或单调性,进而利用零点存在性、惟一性定理判断零点个数;导数法研究三次函数的图象和性质,尤其它的极值与零点关系;
再求导问题,即对导数或其部分进行再求导,不是判别凸凹性,而是求解导数的单调性或极值,进而判断导数的符号和零点.
两次求导屡见不鲜,三次求导已露真容.
例如(2013·广东)设函数f(x)=(x-1)e^x-kx^2(k∈R). 当k∈(1/2,1]时,求函数f(x)在[0,k]上的最大值M.
由于解析式和区间均含有参数,本例的实质是(当参数k变化时)求动曲线在动区间上的最大值问题,颇具难度.在解题过程中,我们不仅三次构造辅助函数,而且有三次求导运算.
我们知道,函数f(x)在闭区间[0,k]上的最大值,只能在区间端点或极大值点取得. 因此,我们先讨论函数f(x)在这个区间上的单调性及极值,首先对f(x)求导,并得到驻点0和ln(2k).为判断驻点是否在这个区间内,需要比较k与ln(2k)的大小,构造辅助函数g(x)并求导(第二次),当推得最大值在端点产生时,需要比较f(0)、f(k)的大小,构造函数f(k)-f(0),并用它的部分构造辅助函数h(x)并求导(第三次). 最终,巧妙地用图象法,比较了e^k与2k+1的大小,从而避免了第四次求导.
● 函数与不等式综合. 往往用导数法证明含参数的不等式.
● 三角函数. 利用三角函数图象、性质、公式求解正弦型函数y=Asin(ωx+φ)的性质及参数,或解三角形.
●利用对数、指数、幂、三角函数模型解决实际问题。
●抽象函数问题.
……
以上内容包含于《函数系列专题讲座》一书. 该书分为函数概念、性质、专题、应用、简易函数、初等函数、派生函数、导函数等8章. 贯通初中、高中、高考. 其全面性、综合性、突重性、时效性独树一帜. 由O客编著,21万字,江西科技出版社出版. 联系2836395133@qq.com
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。