1.2015年湖南高考数学难不难,难度系数解读点评解析

2.2013湖南高考状元汇总

2013年湖南高考文科数学_2013湖南数学高考

考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。下面是我为大家整理的高考数学知识点,希望对大家有所帮助!

高考文科数学考点总结

第一,函式与导数。主要考查 *** 运算、函式的有关概念定义域、值域、解析式、函式的极限、连续、导数。

第二,平面向量与三角函式、三角变换及其应用。这一部分是高考微博的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计。这部分和我们的生活联络比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

第七,解析几何。是高考的难点,运算量大,一般含引数。

 湖南高考文科数学考点一:直线方程

1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.

注:①当或时,直线垂直于轴,它的斜率不存在.

②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.

2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.

特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.

注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.

附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点0,的直线束.②当为定值,变化时,它们表示一组平行直线.

3. ⑴两条直线平行:

∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.

一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且

推论:如果两条直线的倾斜角为则∥.

⑵两条直线垂直:

两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. 即是垂直的充要条件

4. 直线的交角:

⑴直线到的角方向角;直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.

⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.

5. 过两直线的交点的直线系方程为引数,不包括在内

湖南高考文科数学考点二:轨迹方程

一、求动点的轨迹方程的基本步骤

⒈建立适当的座标系,设出动点M的座标;

⒉写出点M的 *** ;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、引数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的座标x,y表示相关点P的座标x0、y0,然后代入点P的座标x0,y0所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋引数法:当动点座标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做引数法。

⒌交轨法:将两动曲线方程中的引数消去,得到不含引数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

湖南高考文科数学考点三:导数

一、函式的单调性

在a,b内可导函式fx,f′x在a,b任意子区间内都不恒等于0.

f′x≥0?fx在a,b上为增函式.

f′x≤0?fx在a,b上为减函式.

二、函式的极值

1、函式的极小值:

函式y=fx在点x=a的函式值fa比它在点x=a附近其它点的函式值都小,f′a=0,而且在点x=a附近的左侧f′x<0,右侧f′x>0,则点a叫做函式y=fx的极小值点,fa叫做函式y=fx的极小值.

2、函式的极大值:

函式y=fx在点x=b的函式值fb比它在点x=b附近的其他点的函式值都大,f′b=0,而且在点x=b附近的左侧f′x>0,右侧f′x<0,则点b叫做函式y=fx的极大值点,fb叫做函式y=fx的极大值.

极小值点,极大值点统称为极值点,极大值和极小值统称为极值.

三、函式的最值

1、在闭区间[a,b]上连续的函式fx在[a,b]上必有最大值与最小值.

2、若函式fx在[a,b]上单调递增,则fa为函式的最小值,fb为函式的最大值;若函式fx在[a,b]上单调递减,则fa为函式的最大值,fb为函式的最小值.

四、求可导函式单调区间的一般步骤和方法

1、确定函式fx的定义域;

2、求f′x,令f′x=0,求出它在定义域内的一切实数根;

3、把函式fx的间断点即fx的无定义点的横座标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函式fx的定义区间分成若干个小区间;

4、确定f′x在各个开区间内的符号,根据f′x的符号判定函式fx在每个相应小开区间内的增减性.

湖南高考文科数学考点四:不等式

1理解不等式的性质及其证明。

导读

不等式的性质是不等式的理论支撑,其基础性质源于数的大小比较。要注意以下几点:

加强化归意识,把比较大小问题转化为实数的运算;

通过复习强化不等式“运算”的条件。如a>b、才c>d在什么条件下才能推出ac>bd;

强化函式的性质在大小比较中的重要作用,加强知识间的联络;

不等式的性质是解、证不等式的基础,对任意两实数a、b有a-b>0 a>b,a-b=0 a=b,a-b<0 a

一定要在理解的基础上记准、记熟不等式的性质,并注意解题中灵活、准确地加以应用;

对两个或两个以上不等式同加或同乘时一定要注意不等式是否同向且大于零;

对于含参问题的大小比较要注意分类讨论。

2掌握两个不扩充套件到三个正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。

导读

1、在证明不等式的各种方法中,作差比较法是一种最基本最重要的方法,它是利用不等式两边的差是正数还是负数来证明不等式,其应用非常广泛,一定要熟练掌握。

2、对于公式a+b≥ 2√ab,ab≤a+b/22要理解它们的作用和使用条件及内在联络,两个公式也体现了ab和a+b的转化关系。

3、在应用均值定理求最值时,要把握定理成立的三个条件就是“一正——各项均为正;二定——积或和为定值;三项等——等号能否取得”。若忽略了某个条件,就会出现错误。

3掌握分析法、综合法、比较法证明的简单不等式。

导读

1、在证明不等式的过程中,分析法和综合法是不能分离的,如果使用综合法证明不等式难以入手时,常用分析法探索证题途径,之后用综合法的形式写出它的证明过程。有时问题证明难度较大,常使用分析综合法,实现两头往中间靠以达到证明目的。

2、由于高考试题不会出现单一的不等式的证明题,常常与函式、数列、三角、方程综合在一起,所以在学习中,不等式的证明除常用的三种方法外,还有其他方法,比如比较大小。证明不等式的常用方法有:差、商比较法、函式性质法、分析综合法和放缩法。要能了解常见的放缩途径,如:利用增或舍、分式性质、函式单调性、有界性、基本不等式及绝对值不等式性质和数学归纳法等。有时要先对不等式作等价变形再进行证明,有时几种证明方法综合使用。

3、比较法有两种形式:一是作差,而是作商。用作差法证明不等式是证明不等式中最基本、最常用的方法。它的依据是不等式的基本性质。步骤是:作差商→变形→判断。变形的目的是为了判断,若是作差,就判断与0的大小关系,为了便于判断,往往把形式变为积或完全平方式。若是作商,两边为正,就判断与1的大小关系。

湖南高考文科数学考点五:几何

1棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

2棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

4圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

5圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

6圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

7球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 看过"湖南高考数学知识点 湖南高考文科数学考点 "的还:

2015年湖南高考数学难不难,难度系数解读点评解析

报考条件简单

成人高考只要满16周岁就可以报考,2年半下证书,你再不学就更晚了。

考试科目简单

考试考数学、语文、英语,450分满分,考的是高中课程。你在家学习可以自己上网百度文库,看看历年的考试题型,自己学学,10月份考试。

学习方式灵活

成人高考现在是函授业余的,辽宁鞍山这边报考只要你入学考试过了,等年限下证就可以了。学习你可以去技能学校学学技能课程。

考试时间充裕

成人高考全国统一考试时间在10月份中旬,距离现在还有7个月左右,你现在报考吧,然后在家自学。

鞍山树人计算机学校

鞍山树人计算机学校

2013湖南高考状元汇总

2015年湖南高考数学试卷答案点评和难度解析一、考点分布

2015年湖南高考数学考查的考点有复数的计算、充要条件的判定、抽样方法、函数的基本性质、解三角形、函数的图像、三视图、平面向量、频数与频率、事件的概率、集合的基本运算、直线的方程、程序框图、线性规划、双曲线的基本概念和性质、新定义题型、三角函数的求值与不等式求解、线面垂直的性质和判定、棱锥的体积的计算公式、数列的通项及前n项和的求法、圆的标准方程、直线和圆锥曲线的位置关系、指数函数的性质、函数的单调性及单调区间、应用导数判断函数的零点等,充分体现了主干知识重点考查的命题思想.

二、数学思想与方法的考查

2013年湖南高考数学注重数学思想与方法的考查,考查函数与方程思想的试题是第4, 21题,考查数形结合思想的试题是第6,14,21题,考查分类与整合思想的试题是第9,22题,考查化归与转化思想的试题是第5, 21题,同时第15题考查考生的创新意识,第18题考查考生的应用意识.

三、试卷结构与难度

2013年湖南高考数学试卷结构整体保持稳定,选择题保持为去年的9道,填空题由7道变为6道,解答题的分布由去年的概率、三角函数、立体几何、实际应用题、解析几何、函数导数不等式数列综合题变为三角函数、立体几何、概率、数列、解析几何、函数导数不等式综合题.同时在三类题型均命制一些基础题,在使考生能得到一定的基本分的前提下加大试题难度.(天星学堂名师教研团 长沙一中高级教师 蒋老师)

2013年湖南高考文科状元是来自湘钢一中的周之恒,总分682分。2013湖南高考理科状元是来自长沙雅礼中学的李卓然,总分704分。

2013年广西高考文科状元:多才多艺

她琴棋书画样样在行,尤其是学钢琴,她从9岁开始一直到高考结束,从来没有中断过。她写得一手好书法,还是学校健美操队的主力队员,代表学校参加湖南省中学生健美赛,获得过团体第一名的好成绩。她还担任过学校学生会副主席、校团委副书记。

母亲唐白茹介绍,其实女儿的学习父母很少操心,倒是更多地关注她的身体和心理健康。考虑到女儿高中学习紧张,他们就让她学舞蹈、学游泳,坚持练健美操。记得最开始,女儿连一个俯卧撑也做不了,但她坚持锻炼,后来居然能一口气做15个。由于周之恒一直是走读,每天中午回家她都要弹上两首钢琴曲。晚上在学校晚自习回到家后,她不再看书,而是劈劈腿、弹弹琴,一般都在11时前睡觉,从不开夜车。周之恒说,与其磨时间,还不如提高单位时间的学习效率。

周之恒考入高中时,中考成绩大约是全年级20名左右,但她学习一直很轻松。唐白茹告诉记者,女儿从小学到高中毕业,从没在外面上过任何补习班,惟一请的家教只是钢琴老师。“学习是件挺好玩的事,像弹钢琴一样,都是我生活的一部分。”周之恒说。

担任过周之恒三年班主任的宋锦前老师评价:“她很勤奋,学习习惯很好,心态好,德智体全面发展,她是个完美的学生,懂得自己想要什么,做起事来特别认真、负责。”

2013年广西高考理科状元:全省唯一700分以上的考生

高中三年,其他同学在校外加班加点上培训班,李卓然却是按学校规定按部就班。即使是高三,他也是按照学校正常时间作息,每天早晨7时来校上早自习,晚上10时晚自习后就回家休息。

“多做一些易错题,专攻薄弱环节。”李卓然说,只要能在学习中找到兴趣,其实高三并不辛苦,反而是高中三年过得最充实开心的一年。同时,除了学习,每天还应该保持放松快乐的心情。

“肯定是填报清华大学。”李卓然说,清华大学是他梦寐以求的大学,但专业方面还没有考虑好,不过他对数学十分感兴趣,未来可能会朝这一方向发展。同时,他对大学生活十分憧憬,除了钻研学业外,他更感兴趣的是大学的社团活动。