1.导数公式是哪些呢?

2.求导的常用公式

3.基本求导公式18个

4.常见求导公式表

5.基本求导公式表

高考求导公式,高考数学求导题50道

高中函数求导公式如下:

常数求导公式

常数的导数均为0,即C'=0,C为常数。

例如:4的导数为零,1/2的导数为零,8.323的导数为零。

幂函数的求导等于幂指数乘以原来幂函数降一次幂的幂函数,幂指数为实常数。

例如:x^3的导数为3x^2,x^(1/2)的导数1/2 x^(-1/2)=1/2√x。

三角函数的求导公式

除了正弦函数和余弦函数以外的其他三角函数的求导公式,都可以通过正弦函数和余弦函数的求导公式进行计算得到。

例如:求y=sinxcosx的导数。

根据上述导数公式进行求导。

具体做法如下:

y'=(sinxcosx)'=(sinx)'·cosx+sinx·(cosx)'=cosxcosx-sinxsinx.

三角函数反函数的求导公式

三角函数反函数一般用三角函数前加arc来表示,例如y=sinx的反函数就是y=arcsinx。

例如:求y=arctanx+arcsinx的导数。

这道题直接根据图三的求导公式计算即可。

具体的做法有:

y'=(arctanx+arcsinx)'=(arctanx)'+(arcsinx)'=1/(1+x^2) +1/√(1-x^2).

导数公式是哪些呢?

1、(C)'=0;

2、(x^a)'=ax^(a-1);

3、(a^x)'=(a^x)lna,a>0,a≠1;(e^x)'=e^x;

4、[logx]'=1/[xlna],a>0,a≠1,(lnx)'=1/x;

5、y=f(t),t=g(x),dy/dx=f'(t)*g'(x);

6、x=f(t),y=g(t),dy/dx=g'(t)/f'(t)。

扩展资料:

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。

求导的常用公式

导数公式指的是基本初等函数的导数公式,导数运算法则主要包括四则运算法则、复合函数求导法则(又叫“链式法则”)。

一、什么是导数?

导数就是“平均变化率“△y/△x”,当△x→0时的极限值”。可导函数y=f(x)在点(a,b)处的导数值为f'(a)。

二、基本初等函数的导数公式

高中数学里基本初等函数的导数公式里涉及到的函数类型有:常函数、幂函数、正弦函数、余弦函数、指数函数、对数函数。它们的导数公式如下图所示:

高中数学基本初等函数导数公式

三、导数加、减、乘、除四则运算法则

导数加、减、乘、除四则运算法则公式如下图所示:

1、加减法运算法则

导数的加、减法运算法则公式

2、乘除法运算法则

导数的乘、除法运算法则公式

注分母g(x)≠0.

为了便于记忆,我们可以把导数的四则运算法则简化为如下图所示的、比较简洁的四则运算公式。

简化后的导数四则运算法则公式

注分母v≠0.

四、复合函数求导公式(“链式法则”)

求一个基本初等函数的导数,只要代入“基本初等函数的导数公式”即可。对于基本初等函数之外的函数如“y=sin(2x)”的导数,则要用到复合函数求导法则(又称“链式法则”)。其内容如下。

(1)若一个函数y=f(g(x)),则它的导数与函数y=f(u),u=g(x)的导数间的关系如下图所示。

复合函数导数公式

(2)根据“复合函数求导公式”可知,“y对x的导数,等于y对u的导数与u对x的导数的乘积”。

例求y=sin(2x)的导数。

解:y=sin(2x)可看成y=sinu与u=2x的复合函数。

因为(sinu)'=cosu,(2x)'=2,

所以,[sin(2x)]'=(sinu)'×(2x)'

=cosu×2=2cosu=2cos(2x)。

五、可导函数在一点处的导数值的物理意义和几何意义

(1)物理意义:可导函数在该点处的瞬时变化率。

(2)几何意义:可导函数在该点处的切线斜率值。

注一次函数“kx+b(k≠0)”的导数都等于斜率“k”,即(kx+b)'=k。

基本求导公式18个

求导的常用公式如下:

1、(sinx)'=cosx,即正弦的导数是余弦。

2、(cosx)'=-sinx,即余弦的导数是正弦的相反数。

3、(tanx)'=(secx)^2,即正切的导数是正割的平方。

4、(cotx)'=-(cscx)^2,即余切的导数是余割平方的相反数。

5、(secx)'=secxtanx,即正割的导数是正割和正切的积。

6、(cscx)'=-cscxcotx,即余割的导数是余割和余切的积的相反数。

7、(arctanx)'=1/(1+x^2)。

8、(arccotx)'=-1/(1+x^2)。

9、(fg)'=f'g+fg',即积的导数等于各因式的导数与其它函数的积,再求和。

10、(f/g)'=(f'g-fg')/g^2,即商的导数,取除函数的平方为除式。被除函数的导数与除函数的积减去被除函数与除函数的导数的积的差为被除式。

11、(f^(-1)(x))'=1/f'(y),即反函数的导数是原函数导数的倒数,注意变量的转换。

常见求导公式表

以下是18个基本导数公式(y:原函数;y':导函数):

1、y=c,y=0(c为常数)

2、y=xxμ,y'=μxμ负1(μ为常数且μ不等于0)。

3。y=aAx,y'=aAxIna。y=eAx,y'=eAx。

4、y=logax,y'=1/(xina)(a>0且a=1);y=Inx,y'=1/x。

5、y=sinx,y'=cosx。

6、y=cosx,y'=负sinx。

7、y=tanx,y'=(secx)2=1/(cosx)2。

8、y=cotx,y'=负(cscx)2=负1/(sinx)2。

9、y=arcsinx,y'=1/√(1负x2)。

10、y=arccosx,y'=负1/√(1负x2)。

11、y=arctanx,y'=1/(1+x2)。

12、y=arccotx,y'=负1/(1+2)。

13、y=shx,y'=chx。

14、y=chx,y'=shx。

15、y=thx,y'=1/(chx)2。

16、y=arshx,y'=1/V(1+x12)。

17、y=c(c为常数)y'=0

18、y=xny'=nxx(n负1)。

基本求导公式表

常见求导公式表如下:

1、常数函数:f(x)=C导数:f(x)=0,幂函数:f(x)=x^n导数:f(x)=nx^(n-1),指数函数:f(x)=e^x导数,f(x)=e^x,对数函数:f(x)=ln(x)导数:f(x)=1/x,三角函数:f(x)=sin(x)导数:f(x)=cos(x),三角函数:f(x)=cos(x)导数:f(x)=-sin(x)。

2、三角函数:f(x)=tan(x)导数:f(x)=sec^2(x),反三角函数:f(x)=arcsin(x)导数:f(x)=1/√(1-x^2),反三角函数:f(x)=arccos(x)导数:f(x)=-1/√(1-x^2),反三角函数f(x)=arctan(x)导数:f(x)=1/(1+x^2)。

3、复合函数:若y=f(u),u=g(x),则y对x的导数为:y=f(u)*g(x),(sinx)=cosx,(cosx)=-sinx,(tanx)=sec^2x,(cotx)=-csc^2x,(secx)=secxtanx,(cscx)=-cscxcotx。C=0(C为常数)。(x∧n)=nx∧(n-1)。(sinx)=cosx。cosx)=-sinx。

导数的基本解题步骤

1、确定函数:首先需要确定题目中涉及的函数,通常是根据题目的条件和定义来得到相应的函数。求导数:根据导数的定义和求导法则,对函数进行求导。求导的过程中需要注意运算法则和函数的变量。

2、令导数为0:求出导数为0的点,这些点通常为极值点或者是拐点。通过令导数为0,可以找到这些关键点。判断单调性:根据导数的符号,可以判断函数的单调性。当导数大于0时,函数单调递增;当导数小于0时,函数单调递减。

3、判断极值:在找到极值点之后,需要判断在这些点处函数是否存在极值。通常可以通过二次求导来确定是否存在极值。求最值:根据函数的单调性和极值,可以确定函数的最值。在求最值时需要注意区间的端点函数值。

求导公式表如下:

1、(sinx)'=cosx,即正弦的导数是余弦。

2、(cosx)'=-sinx,即余弦的导数是正弦的相反数。

3、(tanx)'=(secx)^2,即正切的导数是正割的平方。

4、(cotx)'=-(cscx)^2,即余切的导数是余割平方的相反数。

5、(secx)'=secxtanx,即正割的导数是正割和正切的积。

6、(cscx)'=-cscxcotx,即余割的导数是余割和余切的积的相反数。

7、(arctanx)'=1/(1+x^2)。

8、(arccotx)'=-1/(1+x^2)。

9、(fg)'=f'g+fg',即积的导数等于各因式的导数与其它函数的积,再求和。

10、(f/g)'=(f'g-fg')/g^2,即商的导数,取除函数的平方为除式。被除函数的导数与除函数的积减去被除函数与除函数的导数的积的差为被除式。

11、(f^(-1)(x))'=1/f'(y),即反函数的导数是原函数导数的倒数,注意变量的转换。

求导注意事项

对于函数求导一般要遵循先化简,再求导的原则,求导时不但要重视求导法则的运用,还要特别注意求导法则对求导的制约作用,在化简时,首先注意变换的等价性,避免不必要的运算错误。

需要记住几个常见的高阶导数公式,将其他函数都转化成我们这几种常见的函数,代入公式就可以了,也有通过求一阶导数,二阶,三阶的方法来找出他们之间关系的。