2017高考数学题_2017高考数学3
1.2017年高考数学自主命题的省份有哪些
2.广东高考数学方差必考知识点|高考数学必考知识点
3.2017年高考数学平面向量必考知识点
4.2017江苏高考数学太难考生痛哭 被葛军支配的恐惧
5.高考文科数学知识点总结归纳
高考的卷子中不论是什么科目的考试,都需要设置基础知识和提升的知识。一般会根据知识的难易程度,依次排列。需要注意的是。高考的科目考题中大部分都会是基础知识,只有一小部分是需要一些时间思考的提升。下面是我帮大家整理的2017年广东高考数学压轴题解题方法,供大家参考借鉴,希望可以帮助到有需要的朋友。
2017年广东高考数学压轴题解题方法 篇1特征:
1、综合性,突显数学思想方法的运用;
2、高观点性,与高等数学知识接轨;
3、交汇性,强调各个数学分支的交汇
应对策略:
1、抓好“双基”,注意第一问常常是后续解题的基础
2、要把数学思想方法贯穿于复习过程的始终
3、掌握一些“模型题”,由此出发易得解题突破口
你说你今年的压轴题是圆锥曲线或是不等式的运用,我就给你讲下这两种题型会怎样出现在压轴题中。
一、圆锥曲线
圆锥曲线无非是大多数学生心中的梦魇,在高考中一般以高档题、压轴题出现,主要涉及直线与圆锥曲线的位置关系的判定、弦长问题、最值问题、对称问题、轨迹问题等相关综合问题,突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高。
在我看来,圆锥曲线解题的本质就是将题中的条件和提干中条件和图形中隐含的几何特征转换成灯饰或不等式,最后通过代数运算解决问题,而其中的关键是怎样转换或构造不等式。特别注意注意点差法的运用。
二、不等式证明中的放缩法
不等式的证明是高中数学中的一个难点。它可以考察学生逻辑思维能力和解决问题的能力。正如你所说,放缩法出现的概率极大,若该题型出现在压轴题,此方法必考无疑。放缩法它可以和很多只是内容结合,对应变能力有较高的要求。因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩是要注意适度,否则就不能同向传递。
2017年广东高考数学压轴题解题方法 篇2一、复杂的问题简单化
就是把一个复杂的问题,分解为一系列简单的问题,把复杂的'图形,分成几个基本图形,找相似,找直角,找特殊图形,慢慢求解,高考是分步得分的,这种思考方式尤为重要,即使你最后没有算出结果,但是如果步骤正确,还是会得相应的步骤分的。在高考数学的答题过程中我们需要秉承一个理念,那就是不放过任何一个得分步骤。
二、运动的问题静止化
对于动态的图形,先把不变的线段,不变的角找到,有没有始终相等的线段,始终全等的图形,始终相似的图形,所有的运算都基于它们,在找到变化线段之间的联系,用代数式慢慢求解。
三、一般的问题特殊化
一有些一般的结论,找不到一般解法,先看特殊情况,比如动点问题,看看运动到中点怎样,运动到垂直又怎样,变成等腰三角形又会怎样,先找出结论,再慢慢求解。
四、心态问题
做题时心态是非常重要的,有的同学解答不出来时容易烦躁、紧张、出冷汗或者自暴自弃,这在高考中是最忌讳的。同学在复习备考的时候,可以在有限的时间里利用压轴题训练自己的心态,即使做不出来也要冷静、淡定。控制好时间切记花过多的时间在压轴题上,结果剪了芝麻丢了西瓜。
2017年高考数学自主命题的省份有哪些
试题与去年相比试卷命朴实,平易近人,试卷贴近考生,符合师生期望,整体中较为常规。
试题中不少题目让师生一见如故,平和亲切,重视考查学生的基本数学素养,全盘兼顾知识点、思想方法与能力的考查,关注数学的应用意识与创新意识,除了具有良好的选拔功能,对中学数学教学也具有很好的导向作用,主要表现在注重基础,重视数学素养,加强数学应用与数学思维能力的培养。
注重基础2017年全国高考文科数学Ⅰ卷对基础知识与基础技能的重全面,又突出重点,贴切教学实际,试卷中的每种题型均设置了数量较多的基础题,许多试题都是单一知识点或是最基础的知识交汇点上设置,如1、2、3、6、7、10、11、13、14、15占选择填空题的比例较高达到63﹪.
数学素养方面:
试卷的第12题以解析几何中的椭圆为背景考察了对椭圆的焦点在x,y坐标轴上进行的分类讨论思想,第21题的导数题求导后对a的正负进行的分类讨论思想。第2题以我国太极图中的阴阳鱼为原型,设计几何概型以及几何概率计算问题,贴近考生生活,通过本题的求解,使考生感受中华传统优秀文化的民族性与世界性,深刻地认识到中华民族优秀传统文化的博大精深和源远流长,激励他们创造出更加辉煌的成就。
试卷重视数学知识的应用:
背景来自于学生所能理解的生活现实与社会现实,如19题以生产零件为命题背景,将数学知识与实际问题相结合,考查考生的阅读理解能力以及应用数学知识解决实际问题的能力,体现了数学的应用价值与人文特色,其中知识难度并不复杂,主要在计算能力上的要求较高。对考生的阅读理解能力、数据处理计算能力,理性思维进行了全方面的考查。
综合性与创新性:
为了提高区分度,试卷在注重基础的同时,也充分考查学生的创新意识,试题稳中有变,如第12题,解析几何知识为依托,结合三角函数考查学生对知识点的细节分析能力,给中等学生提供了展示舞台。再如第16题,对学生的空间想象能力,计算能力,分析问题的能力都有较高的要求,对于基础比较好的同学有一定的优势。具有较好的区分度,体现了高考的选拔性。再如第21题,第一问主要考察学生的分类讨论思想,属于学生熟悉的题型,但是对导函数进行因式分解具有一定的难度,第二问比较容易入手,由第1问的讨论学生需要讨论求最小值,难点在于求解不等式,需要学生有较高综合分析能力以及一定的计算能力的要求,这也充分体现了综合性与创新性的特点.当然本题也给优秀学生提供了发挥的平台。
从今年的试卷总体情况来看,新课标卷贴近中学教学实际,注重思想与方法的考察,体现了数学的基础性,应用性和工具性的学科特色,善于应用知识之间的内在联系构建试卷的主体结构,命题更加科学。
广东高考数学方差必考知识点|高考数学必考知识点
全国Ⅰ卷地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建
全国Ⅱ卷地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆
全国Ⅲ卷地区:云南、广西、贵州、四川
海南省:全国Ⅱ卷(语、数、英)+单独命题(政、史、地、物、化、生)
山东省:全国Ⅰ卷(外语、文综、理综)+自主命题(语文、文数、理数)
江苏省:全部科目自主命题
北京市:全部科目自主命题
天津市:全部科目自主命题
2017年高考数学平面向量必考知识点
高考数学的方差知识点在数学解题中有着极其广阔的应用价值,下面是我给大家带来的广东高考数学方差必考知识点,希望对你有帮助。
高考数学方差必考知识点
方差定义
方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。
方差性质
1.设C为常数,则D(C)=0(常数无波动);
2.D(CX)=C2D(X)(常数平方提取);
3.若X、Y相互独立,则前面两项恰为D(X)和D(Y),第三项展开后为
当X、Y相互独立时,,故第三项为零。
独立前提的逐项求和,可推广到有限项。
方差公式:
平均数:M=(x1+x2+x3+?+xn)/n
(n表示这组数据个数,x1、x2、x3?xn表示这组数据具体数值)
方差的应用
计算下列一组数据的极差、方差及标准差(精确到0.01).
50,55,96,98,65,100,70,90,85,100.
答:极差为
100-50=50.
平均数为
2017年高考数学方差必考知识点
一.方差的概念与计算公式
例1 两人的5次测验成绩如下:
X: 50,100,100,60,50 E(X )=72;
Y: 73, 70, 75,72,70 E(Y )=72.
平均成绩相同,但X 不稳定,对平均值的偏离大。
方差描述随机变量对于数学期望的偏离程度。
单个偏离是
消除符号影响
方差即偏离平方的均值,记为D(X ):
直接计算公式分离散型和连续型,具体为:
这里 是一个数。推导另一种计算公式
得到:?方差等于平方的均值减去均值的平方?。
其中,分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动
二.方差的性质
1.设C为常数,则D(C) = 0(常数无波动);
2. D(CX )=C2 D(X ) (常数平方提取);
证:
特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)
3.若X 、Y 相互独立,则
证:
记则前面两项恰为 D(X )和D(Y ),第三项展开后为
当X、Y 相互独立时,故第三项为零。
特别地独立前提的逐项求和,可推广到有限项。
方差公式:
平均数:M=(x1+x2+x3+?+xn)/n (n表示这组数据个数,x1、x2、x3?xn表示这组数据具体数值)
三.常用分布的方差
1.两点分布
2.二项分布
X ~ B ( n, p )
引入随机变量 Xi (第i次试验中A 出现的次数,服从两点分布)
3.泊松分布(推导略)
4.均匀分布
另一计算过程为
5.指数分布(推导略)
6.正态分布(推导略)
7.t分布 :其中X~T(n),E(X)=0;D(X)=n/(n-2);
8.F分布:其中X~F(m,n),E(X)=n/(n-2);
正态分布的后一参数反映它与均值 的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。
例2 求上节例2的方差。
解 根据上节例2给出的分布律,计算得到
工人乙废品数少,波动也小,稳定性好。
方差的定义:
2017江苏高考数学太难考生痛哭 被葛军支配的恐惧
平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量。以下是我为您整理的关于2017年高考数学平面向量必考知识点的相关资料,希望对您有所帮助。
高考数学必考知识点平面向量概念:
(1)向量:既有大小又有方向的量。向量不能比较大小,但向量的模可以比较大小。
(2)零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行。
(3)单位向量:模为1个单位长度的向量
(4)平行向量:方向相同或相反的非零向量
(5)相等向量:长度相等且方向相同的向量
高考数学必考知识点平面向量数量积解析
1、平面向量数量积:已知两个非零向量a、b,那么|a||b|cos?(?是a与b的夹角)叫做a与b的数量积或内积,记作a?b。零向量与任意向量的数量积为0。数量积a?b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos?的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a?b=x1?x2+y1?y2
2、平面向量数量积具有以下性质:
1、a?a=|a|2?0
2、a?b=b?a
3、k(a?b)=(ka)b=a(kb)
4、a?(b+c)=a?b+a?c
5、a?b=0<=>a?b
6、a=kb<=>a//b
7、e1?e2=|e1||e2|cos?
高考数学必考知识点平面向量加法解析
已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。
注:向量的加法满足所有的加法运算定律,如:交换律、结合律。
高考数学必考知识点平面向量减法解析
1、AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、指被减。
-(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。
平面向量公式汇总
1、定比分点
定比分点公式(向量P1P=?向量PP2)
设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 ?,使 向量P1P=?向量PP2,?叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),则有
OP=(OP1+?OP2)(1+?);(定比分点向量公式)
x=(x1+?x2)/(1+?),
y=(y1+?y2)/(1+?)。(定比分点坐标公式)
我们把上面的式子叫做有向线段P1P2的定比分点公式
2、三点共线定理
若OC=?OA +?OB ,且?+?=1 ,则A、B、C三点共线
三角形重心判断式
在△ABC中,若GA +GB +GC=O,则G为△ABC的重心
[编辑本段]向量共线的重要条件
若b?0,则a//b的重要条件是存在唯一实数?,使a=?b。
a//b的重要条件是 xy'-x'y=0。
零向量0平行于任何向量。
[编辑本段]向量垂直的充要条件
a?b的充要条件是 a?b=0。
a?b的充要条件是 xx'+yy'=0。
零向量0垂直于任何向量.
设a=(x,y),b=(x',y')。
3、向量的加法
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
4、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0
AB-AC=CB. 即?共同起点,指向被减?
a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').
5、数乘向量
实数?和向量a的乘积是一个向量,记作?a,且∣?a∣=∣?∣?∣a∣。
当?>0时,?a与a同方向;
当?<0时,?a与a反方向;
当?=0时,?a=0,方向任意。
当a=0时,对于任意实数?,都有?a=0。
注:按定义知,如果?a=0,那么?=0或a=0。
实数?叫做向量a的系数,乘数向量?a的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣?∣>1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上伸长为原来的∣?∣倍;
当∣?∣<1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上缩短为原来的∣?∣倍。
数与向量的乘法满足下面的运算律
结合律:(?a)?b=?(a?b)=(a?b)。
向量对于数的分配律(第一分配律):(?+?)a=?a+?a.
数对于向量的分配律(第二分配律):?(a+b)=?a+?b.
数乘向量的消去律:① 如果实数?0且?a=?b,那么a=b。② 如果a?0且?a=?a,那么?=?。
6、向量的的数量积
定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0?〈a,b〉?
定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a?b=x?x'+y?y'。
向量的数量积的运算律
a?b=b?a(交换律);
(?a)?b=?(a?b)(关于数乘法的结合律);
(a+b)?c=a?c+b?c(分配律);
向量的数量积的性质
a?a=|a|的平方。
a?b 〈=〉a?b=0。
|a?b|?|a|?|b|。
7、向量的数量积与实数运算的主要不同点
(1)向量的数量积不满足结合律,即:(a?b)?c?a?(b?c);例如:(a?b)^2?a^2?b^2。
(2)向量的数量积不满足消去律,即:由 a?b=a?c (a?0),推不出 b=c。
(3)|a?b|?|a|?|b|
(4)由 |a|=|b| ,推不出 a=b或a=-b。
8、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a?b。若a、b不共线,则a?b的模是:∣a?b∣=|a|?|b|?sin〈a,b〉;a?b的方向是:垂直于a和b,且a、b和a?b按这个次序构成右手系。若a、b共线,则a?b=0。
(1)向量的向量积性质:
∣a?b∣是以a和b为边的平行四边形面积。
a?a=0。
a‖b〈=〉a?b=0。
(2)向量的向量积运算律
a?b=-b?a;
(?a)?b=?(a?b)=a?(?b);
(a+b)?c=a?c+b?c.
注:向量没有除法,?向量AB/向量CD?是没有意义的。
(3)向量的三角形不等式
∣∣a∣-∣b∣∣?∣a+b∣?∣a∣+∣b∣;
① 当且仅当a、b反向时,左边取等号;
② 当且仅当a、b同向时,右边取等号。
∣∣a∣-∣b∣∣?∣a-b∣?∣a∣+∣b∣。
① 当且仅当a、b同向时,左边取等号;
高考文科数学知识点总结归纳
每一年的高考过后,最受大家关注的就是数学考试。为什么这么说呢?我想大家都记得2003年的高考数学吧,也正是因为那一年江苏卷从此名震江湖。下面是我整理的2017年江苏高考数学难易程度,大家一起看下是否还是当年的水准。
2017年江苏高考数学难度
2003年,据说当年的高考数学江苏卷被人盗走,有泄题风险,于是特地用了当年的“替补卷”,这一张数学试卷的主出题人,是葛军老师,后来他也被被大家称为“高考数学帝”。同样的10年高考数学,江苏卷葛军再次参与出题。为什么把这两年一起讲呢?因为这两年的江苏卷,难度突然飙升,给考生们杀了个措手不及。
当年很多学生在考场都禁不住压力,边做题边哭,实在是太难了。有些考生更是走出考场就心理崩溃,哭得上气不接下气。这两年的全国平均分说法不一,大概在48分到68分左右,一套高考数学试卷,全国大部分考生竟然连一半的分数都没考到,可想而知难度如何。
后来几年的高考数学,虽然江苏卷依然难度比全国各省试卷都要大一些,但是没有再出现过这样的情况。不过今年确实情况堪忧,不少考生再次哭着走出考场,有学霸称考试太难,草稿纸差点不够,尽全力填补了试卷空白,不知结果如何。
老师闻此情况,特地把2017全国高考数学做了一个难度整理,认真评比之后认为,实际上今年的江苏卷和浙江卷难度不相上下,但是相比03年和10年情况还是要好很多。
高考数学答题注意事项1、抓住重点内容,注重能力培养
高中数学主体内容是支撑整个高考数学最重要的部分,也是进入大学必须掌握的内容,这些内容都是每年高考数学必考且重点考的。象关于函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等,把它们作为复习中的重中之重来处理,要一个一个专题去落实,要通过对这些专题的复习向其他知识点辐射。
2、关心教育动态,注意题型变化
由于新增内容是当前社会生活和生产中应用比较广泛的内容,而与大学接轨内容则是进入大学后必须具备的知识,因此它们都是高考必考的内容,因此一定要把诸如概率与统计、导数及其应用、推理与证明、算法初步与框图的基本要求有目的的进行复习与训练。一定要用新的教学理念进行高三数学教学与复习,
3、细心审题、耐心答题,规范准确,减少失误
计算能力、逻辑推理能力是考试大纲中明确规定的两种培养的能力。可以说是学好数学的两种最基本能力,在数学试卷中的考查无处不在。并且在每年的阅卷中因为这两种能力不好而造成的失分占有相当的比例。所以我们在数学复习时,除抓好知识、题型、方法等方面的教学外,还应通过各种方式、机会提高和规范学生的运算能力和逻辑推理能力。
对于文科生来说,数学是一门比较特别的学科,高考要想数学分数高,必须掌握必考知识点。下面是我为大家整理的高考文科数学知识点,希望对大家有所帮助。
高考文科数学知识点
第一,函数与导数
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析
主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
第七,解析几何
高考的难点,运算量大,一般含参数。
文科数学高频必考考点
第一部分:选择与填空
1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);
2.常用逻辑用语(充要条件,全称量词与存在量词的判定);
3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);
4.幂、指、对函数式运算及图像和性质
5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);
6.空间体的三视图及其还原图的表面积和体积;
7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;
8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;
9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);
10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;
11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;
12.向量数量积、坐标运算、向量的几何意义的应用;
13.正余弦定理应用及解三角形;
14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;
15.线性规划的应用;会求目标函数;
16.圆锥曲线的性质应用(特别是会求离心率);
17.导数的几何意义及运算、定积分简单求法
18.复数的概念、四则运算及几何意义;
19.抽象函数的识别与应用;
第二部分:解答题
第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;
第18题:(文)概率与统计(概率与统计相结合型)
(理)离散型随机变量的概率分布列及其数字特征;
第19题:立体几何
①证线面平行垂直;面与面平行垂直
②求空间中角(理科特别是二面角的求法)
③求距离(理科:动态性)空间体体积;
第20题:解析几何(注重思维能力与技巧,减少计算量)
①求曲线轨迹方程(用定义或待定系数法)
②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)
③求定点、定值、最值,求参数取值的问题;
第21题:函数与导数的综合应用
这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。
主要考查:分类讨论思想;化归、转化、迁移思想;整体代换、分与合思想
一般设计三问:
①求待定系数,利用求导讨论确定函数的单调性;
②求参变数取值或函数的最值;
③探究性问题或证不等式恒成立问题。
第22题:三选一:
(1)几何证明主要考查三角形相似,圆的切割线定理,证明成比例,求角度,求长度;利用射影定理解决圆中计算和证明问题是历年高考题的 热点 ;
(2)坐标系与参数方程,主要抓两点:参数方程、极坐标方程互化为普通方程;有参数、极坐标方程求解曲线的基本量。这类题,思路清晰,难度不大,抓基础,不做难题。
(3)不等式选讲:绝对值不等式与函数结合型。设计上为:①解含有参变数关于x的不等式;②求解不等式恒成立时参变数的取值;③证明不等式(利用均值定理、放缩法等)。
2018高考文科数学知识点:高中数学知识点 总结
必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题
3、圆方程:
必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
高考文科数学知识点总结
乘法与因式分解
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
根与系数的关系
X1+X2=-b/aX1__X2=c/a注:韦达定理
判别式
b2-4a=0注:方程有相等的两实根
b2-4ac>0注:方程有一个实根
b2-4ac<0注:方程有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积公式
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB
-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和公式
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理:a/sinA=b/sinB=c/sinC=2R
注:其中R表示三角形的外接圆半径
余弦定理:b2=a2+c2-2accosB
注:角B是边a和边c的夹角
高考文科数学知识点总结相关 文章 :
★ 2022北京卷高考文科数学试题及答案解析
★ 2022全国新高考Ⅰ卷文科数学试题及答案解析
★ 2022年全国新高考1卷数学试题及答案解析
★ 2022全国新高考Ⅱ卷文科数学试题及答案解析
★ 高中导数知识点总结大全
★ 山东2022高考文科数学试题及答案解析
★ 湖北2022高考文科数学试题及答案解析
★ 2022河北高考文科数学试题及答案解析
★ 高中文科数学复习指导与注意事项
★ 2017高考数学三角函数知识点总结
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。