1.2017年全国一卷数学高考题,如图,答案最后为什么写m>负一?

2.2017全国高考数学(理I)20题为了判断f(x)的第二个零点,取x=ln(3/a-1)如何想到?

3.如何评价2017年高考全国卷三理数

2017高考数学模拟试卷,高考真题2017数学

高中数学合集百度网盘下载

链接:提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

2017年全国一卷数学高考题,如图,答案最后为什么写m>负一?

2017年江苏高考数学学科考试刚刚结束,从试卷结构看,总体保持了传统的江苏命题风格,尤其注重对学生“三基”能力的考查,基本符合《考试说明》的各项要求,覆盖了《考试说明》中要求的8个C级考点和大部分B级考点,同时兼顾了中学的实际情况,在平稳中略有变化,看似平和但是创新意识强。既能做到以人为本,又能体现高考数学试卷的选拔功能,试题的命制也注重解法的多样性,学生能从多角度进行思考、解决问题,这份试卷在试题类型与近三年相当,但难度方面比前两年有提高。

14个填空题整体结构与往年相似,最后几个问题考查的内容一直是最后模拟考试训练的题型,难度上呈螺旋式上升趋势,在考试过程中有效增强了学生的自信心,也有很强的区分度!其中13题考查了直线与圆、向量与不等式的综合,有一定的区分度,但是如果平时加强对综合能力的训练的话处理起来应该不会太难;14题考查的是函数中的零点个数问题,对学生数形结合的思想提出了很高的要求。填空题大体的题型我们都已经训练过了,学生得分应该不低!

2017全国高考数学(理I)20题为了判断f(x)的第二个零点,取x=ln(3/a-1)如何想到?

由前面推导可知,即由题设可知根的判别式=16(4K^2-m^2+1)>0,后面又求得k=-(m+1)/2

这样将k代入进去,4K^2-m^2+1>0

4ⅹ[-(m+1)/2]^2-m^2+1>0

化简得2m+2>0得m>-1

所以当且仅当m>-1时,根的判别式﹥0就是这样得来的。

如何评价2017年高考全国卷三理数

f'(x)=2ax+(2-a)-1/x

=(2ax^2+(2-a)x-1)/x

=(2x-1)(ax+1)/x

a>1

令f'(x)>=0

x<=-1/a或x>=1/2

定义域是x>0

∴x>=1/2

增区间是[1/2,+∞),减区间是(0,1/2]

当1/a>=1/2时

f(x)在区间[1/a,1]内的最大值

=f(1)

=a+2-a-0

=2不是ln3

∴1/a<1/2

a>2

f(x)在区间[1/a,1]内的最大值

=f(1/a)

=a*1/a^2+(2-a)/a-ln(1/a)

=1/a+2/a-1+lna

=3/a-1+lna

=ln3

∴a=3符合a>2

综上a=3

如果您认可我的回答,请点击“为满意答案”,祝学习进步!

纵观整份试卷,考查难度基本与去年持平,计算量较去年下降不少,但对于知识的灵活运用的考查比以往提高不少。

买票速度就服这里,别不信

广告

试卷很好的覆盖了高中数学的主干知识,大多题目都是对基础概念和基本解题方法的考查,检查学生是否认真对待高中知识的学习和考前的复习。对于中档以上的学生,可以比较多的展示自己的数学基本功。

试卷的大多数题目都会让学生有亲切感,比如第2题,考查复数的模长,如果注意到复数模长乘积与复数乘积的模长之间关系的话就可以秒杀了,节省时间。第6题考查比较常规的余弦型函数图象性质,但我们课内练习的比较多的都是正弦型,余弦型函数练得不多,但是其实用诱导公式就可以变为我们熟悉的正弦了。还有17题解三角形,18概率统计应用,19题立体几何,23不等式选讲。都属于学生日常训练中常见的题型,只要基础扎实,就不难解决。

针对这一现象,建议同学们在复习的时候一定要先巩固基础再挑战难题,重视扎实而全面的一轮复习,千万不要好高骛远,也不要心存侥幸。特别是最后的选修内容二选一,强烈建议学生两题的常规题型都要会,给自己选择的机会,不要只练其中一题。

对于一些综合的题型,更重视思维能力,灵活运用基本模型,突出数学的本质。例如第11题,函数的比较综合的考法,可以从零点转为根进而转为交点来处理,结合着图象变化,复合函数图象的画法;也可以从偶函数平移的对称性出发。第12题,是新课标第一次把向量考在压轴的位置,但其实平时模拟的时候遇到过,可以标准的建系用坐标来处理;如果平时积累得多的话,可以用等系数和线秒杀。第16题,如果直接类比到正方体内,可以比较快速的得到结论,凭空想实在不好理思路。第20题,对于抛物线的问题我们课内重中之重强调过,设点坐标的形式可以缩减计算量,然后比较标准的向量处理圆的问题,也是强调过很多次的了。第21题,是一个非常经典的函数,我们在一开始讲导数就强调过,对数函数的重要切线,之后的不等式的处理也属于常规套路,对数相加转为真数相乘。

当然,对于综合题型,我们在日常的复习中,要重视知识点之间的结合,甚至于知识模块中的结合,重视数学思维的培养,不能把数学学成死记硬背,重在分析理解。只有深刻挖掘自己解题背后的思维内涵,才能不断训练自己更好的把握数学的本质,学好数学。